相关习题
 0  265720  265728  265734  265738  265744  265746  265750  265756  265758  265764  265770  265774  265776  265780  265786  265788  265794  265798  265800  265804  265806  265810  265812  265814  265815  265816  265818  265819  265820  265822  265824  265828  265830  265834  265836  265840  265846  265848  265854  265858  265860  265864  265870  265876  265878  265884  265888  265890  265896  265900  265906  265914  266669 

科目: 来源: 题型:

【题目】已知是定义在上的函数,记的最大值为.若存在,满足,则称一次函数的“逼近函数”,此时的称为上的“逼近确界”.

(1)验证:的“逼近函数”;

(2)已知.若的“逼近函数”,求的值;

(3)已知的逼近确界为,求证:对任意常数.

查看答案和解析>>

科目: 来源: 题型:

【题目】数列的前n组成集合,从集合中任取个数,其所有可能的k个数的乘积的和为(若只取一个数,规定乘积为此数本身),例如:对于数列,当时,时,

1)若集合,求当时,的值;

2)若集合,证明:时集合时集合(为了以示区别,用表示)有关系式,其中

3)对于(2)中集合.定义,求(用n表示).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线为公海与领海的分界线,一艘巡逻艇在原点处发现了北偏东 海面上处有一艘走私船,走私船正向停泊在公海上接应的走私海轮航行,以便上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.

1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;

2)若与公海的最近距离20海里,要保证在领海内捕获走私船,则之间的最远距离是多少海里?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)求函数上的单调递增区间;

2)将函数的图象向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象.求证:存在无穷多个互不相同的整数,使得.

查看答案和解析>>

科目: 来源: 题型:

【题目】现有10个不同的产品,其中4个次品,6个正品.现每次取其中一个进行测试,直到4个次品全测完为止,若最后一个次品恰好在第五次测试时被发现,则该情况出现的概率是_______.

查看答案和解析>>

科目: 来源: 题型:

【题目】设点的坐标分别为,直线相交于点,且的斜率之差是1.

1)求点的轨迹的方程;

2)过轨迹上的点,作圆的两条切线,分别交轴于点.当的面积最小时,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱柱中,底面为等腰梯形,.平面平面,四边形为菱形,.

1)求证:

2)求与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知箱中装有10个不同的小球,其中2个红球、3个黑球和5个白球,现从该箱中有放回地依次取出3个小球.则3个小球颜色互不相同的概率是______;若变量为取出3个球中红球的个数,则的方差______.

查看答案和解析>>

科目: 来源: 题型:

【题目】设数列,对任意都有,(其中kbp是常数).

1)当时,求

2)当时,若,求数列的通项公式;

3)若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是封闭数列.当时,设是数列的前n项和,,试问:是否存在这样的封闭数列,使得对任意,都有,且.若存在,求数列的首项的所有取值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】是定义在上的函数,若存在,使得上单调递增,在上单调递减,则称上的单峰函数,称为峰点,包含峰点的区间称为含峰区间;

1)判断下列函数:①,②,哪些是上的单峰函数?若是,指出峰点,若不是,说明理由;

2)若函数)是上的单峰函数,求实数a的取值范围;

3)设上的单峰函数,若m),,且,求证:的含峰区间.

查看答案和解析>>

同步练习册答案