科目: 来源: 题型:
【题目】已知是定义在上的函数,记,的最大值为.若存在,满足,则称一次函数是的“逼近函数”,此时的称为在上的“逼近确界”.
(1)验证:是的“逼近函数”;
(2)已知.若是的“逼近函数”,求的值;
(3)已知的逼近确界为,求证:对任意常数,.
查看答案和解析>>
科目: 来源: 题型:
【题目】数列的前n项组成集合,从集合中任取个数,其所有可能的k个数的乘积的和为(若只取一个数,规定乘积为此数本身),例如:对于数列,当时,时,;
(1)若集合,求当时,的值;
(2)若集合,证明:时集合的与时集合的(为了以示区别,用表示)有关系式,其中;
(3)对于(2)中集合.定义,求(用n表示).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线为公海与领海的分界线,一艘巡逻艇在原点处发现了北偏东 海面上处有一艘走私船,走私船正向停泊在公海上接应的走私海轮航行,以便上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.
(1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;
(2)若与公海的最近距离20海里,要保证在领海内捕获走私船,则,之间的最远距离是多少海里?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数.
(1)求函数在上的单调递增区间;
(2)将函数的图象向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象.求证:存在无穷多个互不相同的整数,使得.
查看答案和解析>>
科目: 来源: 题型:
【题目】现有10个不同的产品,其中4个次品,6个正品.现每次取其中一个进行测试,直到4个次品全测完为止,若最后一个次品恰好在第五次测试时被发现,则该情况出现的概率是_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】设点,的坐标分别为,,直线和相交于点,且和的斜率之差是1.
(1)求点的轨迹的方程;
(2)过轨迹上的点,,作圆:的两条切线,分别交轴于点,.当的面积最小时,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知箱中装有10个不同的小球,其中2个红球、3个黑球和5个白球,现从该箱中有放回地依次取出3个小球.则3个小球颜色互不相同的概率是______;若变量为取出3个球中红球的个数,则的方差______.
查看答案和解析>>
科目: 来源: 题型:
【题目】设数列,对任意都有,(其中k、b、p是常数).
(1)当,,时,求;
(2)当,,时,若,,求数列的通项公式;
(3)若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当,,时,设是数列的前n项和,,试问:是否存在这样的“封闭数列”,使得对任意,都有,且.若存在,求数列的首项的所有取值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设是定义在上的函数,若存在,使得在上单调递增,在上单调递减,则称为上的单峰函数,称为峰点,包含峰点的区间称为含峰区间;
(1)判断下列函数:①,②,哪些是“上的单峰函数”?若是,指出峰点,若不是,说明理由;
(2)若函数()是上的单峰函数,求实数a的取值范围;
(3)设是上的单峰函数,若m,),,且,求证:为的含峰区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com