科目: 来源: 题型:
【题目】数列满足.
①存在可以生成的数列是常数数列;
②“数列中存在某一项”是“数列为有穷数列”的充要条件;
③若为单调递增数列,则的取值范围是;
④只要,其中,则一定存在;
其中正确命题的序号为__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程(为参数).直线的参数方程(为参数).
(Ⅰ)求曲线在直角坐标系中的普通方程;
(Ⅱ)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,当曲线截直线所得线段的中点极坐标为时,求直线的倾斜角.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两位同学参加诗词大赛,各答3道题,每人答对每道题的概率均为,且各人是否答对每道题互不影响.
(Ⅰ)用表示甲同学答对题目的个数,求随机变量的分布列和数学期望;
(Ⅱ)设为事件“甲比乙答对题目数恰好多2”,求事件发生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线,,则下面结论正确的是( )
A.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
B.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线
D.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,曲线由两个椭圆:和椭圆:组成,当成等比数列时,称曲线为“猫眼曲线”.
(1)若猫眼曲线过点,且的公比为,求猫眼曲线的方程;
(2)对于题(1)中的求猫眼曲线,任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为M,交椭圆所得弦的中点为N,求证:为与无关的定值;
(3)若斜率为的直线为椭圆的切线,且交椭圆于点,为椭圆上的任意一点(点与点不重合),求面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在一条景观道的一端有一个半径为米的圆形摩天轮O,逆时针分钟转一圈,从处进入摩天轮的座舱,垂直于地面,在距离处米处设置了一个望远镜.
(1)同学甲打算独自乘坐摩天轮,但是其母亲不放心,于是约定在登上摩天轮座舱分钟后,在座舱内向其母亲挥手致意,而其母亲则在望远镜中仔细观看.问望远镜的仰角应调整为多少度?(精确到1度)
(2)在同学甲向其母亲挥手致意的同时,同一座舱的另一名乘客乙在拍摄地面上的一条绿化带,发现取景的视角恰为,求绿化带的长度(精确到1米)
查看答案和解析>>
科目: 来源: 题型:
【题目】某农场规划将果树种在正方形的场地内.为了保护果树不被风吹,决定在果树的周围种松树. 在下图里,你可以看到规划种植果树的列数(n),果树数量及松树数量的规律:
(1)按此规律,n = 5时果树数量及松树数量分别为多少;并写出果树数量,及松树数量关于n的表达式
(2)定义: 为增加的速度;现农场想扩大种植面积,问:哪种树增加的速度会更快?并说明理由
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,某人打算做一个正四棱锥形的金字塔模型,先用木料搭边框,再用其他材料填充,已知金字塔的每一条棱和边都相等.
(1)求证:直线AC垂直于直线SD;
(2)若搭边框共使用木料24米,则需要多少立方米的填充材料才能将整个金字塔内部填满?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数(为常数,且),且数列是首项为,公差为的等差数列.
(1)求证:数列是等比数列;
(2)若,当时,求数列的前项和的最小值;
(3)若,问是否存在实数,使得是递增数列?若存在,求出的范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com