相关习题
 0  265732  265740  265746  265750  265756  265758  265762  265768  265770  265776  265782  265786  265788  265792  265798  265800  265806  265810  265812  265816  265818  265822  265824  265826  265827  265828  265830  265831  265832  265834  265836  265840  265842  265846  265848  265852  265858  265860  265866  265870  265872  265876  265882  265888  265890  265896  265900  265902  265908  265912  265918  265926  266669 

科目: 来源: 题型:

【题目】若数列满足则称数列.

1)若数列,试写出的所有可能值;

2)若数列,且的最大值;

3)对任意给定的正整数是否存在数列使得?若存在,写出满足条件的一个数列;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】设椭圆,定义椭圆C相关圆E:.若抛物线的焦点与椭圆C的右焦点重合,且椭圆C的短轴长与焦距相等.

1)求椭圆C及其相关圆E的方程;

2)过相关圆E上任意一点P作其切线l,若l 与椭圆交于A,B两点,求证:为定值(为坐标原点);

3)在(2)的条件下,求面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直四棱柱中,底面为菱形,且侧棱 其中交点.

1)求点到平面的距离;

2)在线段上,是否存在一个点,使得直线垂直?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的图象过点和点.

1)求函数的最大值与最小值;

2)将函数的图象向左平移个单位后,得到函数的图象;已知点,若函数的图象上存在点,使得,求函数图象的对称中心.

查看答案和解析>>

科目: 来源: 题型:

【题目】为数列的前n项和, 且满足为常数.

1)若,求的值;

2)是否存在实数 ,使得数列为等差数列?若存在,求出的值;若不存在,请说明理由;

3)当时,若数列满足,且,令,求数列的前n项和.

查看答案和解析>>

科目: 来源: 题型:

【题目】设椭圆,定义椭圆C相关圆E:.若抛物线的焦点与椭圆C的右焦点重合,且椭圆C的短轴长与焦距相等.

1)求椭圆C及其相关圆E的方程;

2)过相关圆E上任意一点P作其切线l,若l 与椭圆交于A,B两点,求证:为定值(为坐标原点);

3)在(2)的条件下,求面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的图象过点和点.

1)求函数的最大值与最小值;

2)将函数的图象向左平移个单位后,得到函数的图象;已知点,若函数的图象上存在点,使得,求函数图象的对称中心.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知是定义在上的函数,如果存在常数,对区间的任意划分:,和式恒成立,则称上的绝对差有界函数。注:

1)证明函数上是绝对差有界函数

2)证明函数不是上的绝对差有界函数

3)记集合存在常数,对任意的,有成立,证明集合中的任意函数绝对差有界函数,并判断是否在集合中,如果在,请证明并求的最小值;如果不在,请说明理由。

查看答案和解析>>

科目: 来源: 题型:

【题目】教材曾有介绍:圆上的点处的切线方程为。我们将其结论推广:椭圆上的点处的切线方程为,在解本题时可以直接应用。已知,直线与椭圆有且只有一个公共点.

(1)求的值;

(2)设为坐标原点,过椭圆上的两点分别作该椭圆的两条切线,且交于点。当变化时,求面积的最大值;

(3)在(2)的条件下,经过点作直线与该椭圆交于两点,在线段上存在点,使成立,试问:点是否在直线上,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一智能扫地机器人在A处发现位于它正西方向的B处和北偏东方向上的C处分别有需要清扫的垃圾,红外线感应测量发现机器人到B的距离比到C的距离少0.4m,于是选择沿路线清扫.已知智能扫地机器人的直线行走速度为0.2m/s,忽略机器人吸入垃圾及在B处旋转所用时间,10秒钟完成了清扫任务.

1BC两处垃圾的距离是多少?(精确到0.1

2)智能扫地机器人此次清扫行走路线的夹角是多少?(用反三角函数表示)

查看答案和解析>>

同步练习册答案