相关习题
 0  265751  265759  265765  265769  265775  265777  265781  265787  265789  265795  265801  265805  265807  265811  265817  265819  265825  265829  265831  265835  265837  265841  265843  265845  265846  265847  265849  265850  265851  265853  265855  265859  265861  265865  265867  265871  265877  265879  265885  265889  265891  265895  265901  265907  265909  265915  265919  265921  265927  265931  265937  265945  266669 

科目: 来源: 题型:

【题目】已知等比数列的首项,数列项和记为,前项积记为.

(1) ,求等比数列的公比

(2) (1)的条件下,判断的大小;并求为何值时,取得最大值;

(3) (1)的条件下,证明:若数列中的任意相邻三项按从小到大排列,则总可以使其成等差数列;若所有这些等差数列的公差按从小到大的顺序依次记为,则数列为等比数列.

查看答案和解析>>

科目: 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.

(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;

(2)若是定义在区间上的“局部奇函数”,求实数的取值范围;

(3)若为定义域上的“局部奇函数”,求实数的取值范围;

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的右顶点、上顶点分别为AB,坐标原点到直线AB的距离为,且.

1)求椭圆C的方程;

2)过椭圆C的左焦点的直线交椭圆于MN两点,且该椭圆上存在点P,使得四边形MONP(图形上字母按此顺序排列)恰好为平行四边形,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x),g(x)=|xlnxax2|,a.

(1)讨论f(x)的单调性;

(2)若g(x)在区间(1,e)有极小值,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点P(1,2)在抛物线C:y2=2px(p>0)上.

(Ⅰ)求C的方程;

(Ⅱ)斜率为﹣1的直线与C交于异于点P的两个不同的点M,N,若直线PM,PN分别与x轴交于A,B两点,求证:△PAB为等腰三角形.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从四所高校中选2.

(Ⅰ)求甲、乙、丙三名同学都选高校的概率;

(Ⅱ)若已知甲同学特别喜欢高校,他必选校,另在三校中再随机选1所;而同学乙和丙对四所高校没有偏爱,因此他们每人在四所高校中随机选2.

(ⅰ)求甲同学选高校且乙、丙都未选高校的概率;

(ⅱ)记为甲、乙、丙三名同学中选校的人数,求随机变量的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在六棱锥PABCDEF中,六边形ABCDEF为正六边形,平面PAB⊥平面ABCDEF,AB=1,PA,PB=2.

(1)求证:PA⊥平面ABCDEF;

(2)求直线PD与平面PAE所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}为等差数列,a1=1,前n项和为Sn,数列{bn}为等比数列,b1>1,公比为2,且b2S3=54,b3+S2=16.

(Ⅰ)求数列{an}与{bn}的通项公式;

(Ⅱ)设数列{cn}满足cn=an+bn,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=()|x|,若函数g(x)=f(x1)+a(ex1+ex+1)存在最大值M,则实数a的取值范围为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】已知项数为的数列满足如下条件:①;②.若数列满足,其中,则称的“伴随数列”.

(1)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;

(2)若的“伴随数列”,证明:

(3)已知数列存在“伴随数列”,且,,求m的最大值.

查看答案和解析>>

同步练习册答案