相关习题
 0  265795  265803  265809  265813  265819  265821  265825  265831  265833  265839  265845  265849  265851  265855  265861  265863  265869  265873  265875  265879  265881  265885  265887  265889  265890  265891  265893  265894  265895  265897  265899  265903  265905  265909  265911  265915  265921  265923  265929  265933  265935  265939  265945  265951  265953  265959  265963  265965  265971  265975  265981  265989  266669 

科目: 来源: 题型:

【题目】某市一中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:

1)根据茎叶图求甲乙两位同学成绩的中位数,并据此判断甲乙两位同学的成绩谁更好?

2)将同学乙的成绩的频率分布直方图补充完整;

3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设选出的2个成绩中含甲的成绩的个数为,求的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】某健身馆在201978两月推出优惠项目吸引了一批客户.为预估202078两月客户投入的健身消费金额,健身馆随机抽样统计了201978两月100名客户的消费金额,分组如下:(单位:元),得到如图所示的频率分布直方图:

1)请用抽样的数据预估202078两月健身客户人均消费的金额(同一组中的数据用该组区间的中点值作代表);

2)若把201978两月健身消费金额不低于800元的客户,称为健身达人,经数据处理,现在列联表中得到一定的相关数据,请补全空格处的数据,并根据列联表判断是否有的把握认为健身达人与性别有关?

健身达人

非健身达人

总计

10

30

总计

3)为吸引顾客,在健身项目之外,该健身馆特别推出健身配套营养品的销售,现有两种促销方案.

方案一:每满800元可立减100元;

方案二:金额超过800元可抽奖三次,每次中奖的概率为,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7.

若某人打算购买1000元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.

附:

0.150

0.100

0.050

0.010

0.005

2.072

2.706

3.841

6.635

7.879

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列的前项和为,且点在函数的图像上;

1)求数列的通项公式;

2)设数列满足:,求的通项公式;

3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;

查看答案和解析>>

科目: 来源: 题型:

【题目】有一块铁皮零件,其形状是由边长为的正方形截去一个三角形所得的五边形,其中,如图所示.现在需要用这块材料截取矩形铁皮,使得矩形相邻两边分别落在上,另一顶点落在边边上.,矩形的面积为.

1)试求出矩形铁皮的面积关于的函数解析式,并写出定义域;

2)试问如何截取(即取何值时),可使得到的矩形的面积最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知是两条不同直线,是两个不同平面,给出下列四个命题:

①若垂直于同一平面,则平行;

②若平行于同一平面,则平行;

③若不平行,则在内不存在与平行的直线;

④若不平行,则不可能垂直于同一平面

其中真命题的个数为(  )

A.4B.3C.2D.1

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,为坐标原点.

(1)求椭圆的方程;

(2)设点在椭圆上,点在直线上,且,求证:为定值;

(3)设点在椭圆上运动,,且点到直线的距离为常数,求动点的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了配合今年上海迪斯尼游园工作,某单位设计了统计人数的数学模型:以表示第个时刻进入园区的人数;以表示第个时刻离开园区的人数.设定以分钟为一个计算单位,上午分作为第个计算人数单位,即分作为第个计算单位,即;依次类推,把一天内从上午点到晚上分分成个计算单位(最后结果四舍五入,精确到整数).

1)试计算当天点至点这一小时内,进入园区的游客人数、离开园区的游客人数各为多少?

2)假设当日园区游客总人数达到或超过万时,园区将采取限流措施.该单位借助该数学模型知晓当天点(即)时,园区总人数会达到最高,请问当日是否要采取限流措施?说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.

1)求圆C的直角坐标方程及直线的斜率;

2)直线与圆C交于MN两点,中点为Q,求Q点轨迹的直角坐标方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)求在点处的切线方程;

2)若不等式恒成立,求k的取值范围;

3)函数,设,记上得最大值为,当最小时,求k的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】冬季历来是交通事故多发期,面临着货运高危运行、恶劣天气频发、包车客运监管漏洞和农村交通繁忙等四个方面的挑战.全国公安交管部门要认清形势、正视问题,针对近期事故暴露出来的问题,强薄羽、补短板、堵漏洞,进一步推动五大行动,巩固扩大五大行动成果,全力确保冬季交通安全形势稳定.据此,某网站推出了关于交通道路安全情况的调查,通过调查年龄在的人群,数据表明,交通道路安全仍是百姓最为关心的热点,参与调查者中关注此类问题的约占80%.现从参与调查并关注交通道路安全的人群中随机选出100人,并将这100人按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

1)求这100人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);

2)现在要从年龄较大的第12组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人进行问卷调查,求第2组恰好抽到1人的概率;

查看答案和解析>>

同步练习册答案