科目: 来源: 题型:
【题目】在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为;
当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线定义为曲线C的“伴随曲线”.现有下列命题:
①若点A的“伴随点”是点,则点的“伴随点”是点A
②单位圆的“伴随曲线”是它自身;
③若曲线C关于x轴对称,则其“伴随曲线”关于y轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是_____________(写出所有真命题的序列).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,、是两个垃圾中转站,在的正东方向千米处,的南面为居民生活区.为了妥善处理生活垃圾,政府决定在的北面建一个垃圾发电厂.垃圾发电厂的选址拟满足以下两个要求(、、可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点到直线的距离要尽可能大).现估测得、两个中转站每天集中的生活垃圾量分别约为吨和吨.设.
(1)求(用的表达式表示);
(2)垃圾发电厂该如何选址才能同时满足上述要求?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正项数列,满足:对任意正整数,都有,,成等差数列,,,成等比数列,且,.
(Ⅰ)求证:数列是等差数列;
(Ⅱ)求数列,的通项公式;
(Ⅲ)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.
(1)设,判断在上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;
(2)若函数在上是以为上界的有界函数,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正项数列,满足:对任意正整数,都有,,成等差数列,,,成等比数列,且,.
(Ⅰ)求证:数列是等差数列;
(Ⅱ)求数列,的通项公式;
(Ⅲ)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义上的函数,若满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.
(1)设,判断在上是否有界函数,若是,请说明理由,并写出的所有上界的值的集合,若不是,也请说明理由;
(2)若函数在上是以3为上界的有界函数,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲乙两人同时参加一次数学测试,共有20道选择题,每题均有4个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有的试题,经比较,他们只有2道题的选项不同,如果甲最终的得分为54分,那么乙的所有可能的得分值组成的集合为________.
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆:()的右焦点为,短轴的一个端点到的距离等于焦距.
(1)求椭圆的标准方程;
(2)设、是四条直线,所围成的矩形在第一、第二象限的两个顶点,是椭圆上任意一点,若,求证:为定值;
(3)过点的直线与椭圆交于不同的两点、,且满足△与△的面积的比值为,求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.
(1)设,判断在上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;
(2)若函数在上是以为上界的有界函数,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com