科目: 来源: 题型:
【题目】在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为;
当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线定义为曲线C的“伴随曲线”.现有下列命题:
①若点A的“伴随点”是点,则点的“伴随点”是点A
②单位圆的“伴随曲线”是它自身;
③若曲线C关于x轴对称,则其“伴随曲线”关于y轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是_____________(写出所有真命题的序列).
查看答案和解析>>
科目: 来源: 题型:
【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为______元.
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校高三年级有400名学生参加某项体育测试,根据男女学生人数比例,使用分层抽样的方法从中抽取了100名学生,记录他们的分数,将数据分成7组:,整理得到如下频率分布直方图:
(1)若该样本中男生有55人,试估计该学校高三年级女生总人数;
(2)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率;
(3)若规定分数在为“良好”,为“优秀”.用频率估计概率,从该校高三年级随机抽取三人,记该项测试分数为“良好”或“优秀”的人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:.
(1)求椭圆C的离心率;
(2)设分别为椭圆C的左右顶点,点P在椭圆C上,直线AP,BP分别与直线相交于点M,N.当点P运动时,以M,N为直径的圆是否经过轴上的定点?试证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】若无穷数列满足:只要,必有,则称具有性质.
(1)若具有性质,且,求;
(2)若无穷数列是等差数列,无穷数列是等比数列,,,.判断是否具有性质,并说明理由;
(3)设是无穷数列,已知.求证:“对任意都具有性质”的充要条件为“是常数列”.
查看答案和解析>>
科目: 来源: 题型:
【题目】某部影片的盈利额(即影片的票房收入与固定成本之差)记为,观影人数记为,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后与的函数图象.
给出下列四种说法:
①图(2)对应的方案是:提高票价,并提高成本;
②图(2)对应的方案是:保持票价不变,并降低成本;
③图(3)对应的方案是:提高票价,并保持成本不变;
④图(3)对应的方案是:提高票价,并降低成本.
其中,正确的说法是____________.(填写所有正确说法的编号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com