相关习题
 0  265832  265840  265846  265850  265856  265858  265862  265868  265870  265876  265882  265886  265888  265892  265898  265900  265906  265910  265912  265916  265918  265922  265924  265926  265927  265928  265930  265931  265932  265934  265936  265940  265942  265946  265948  265952  265958  265960  265966  265970  265972  265976  265982  265988  265990  265996  266000  266002  266008  266012  266018  266026  266669 

科目: 来源: 题型:

【题目】已知函数,其中.

(1)若曲线在点处的切线与直线平行,求满足的关系;

(2)当时,讨论的单调性;

(3)当时,对任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为.

(1)求的方程;

(2)如图,经过椭圆左顶点且斜率为的直线交于两点,交轴于点,点为线段的中点,若点关于轴的对称点为,过点为坐标原点)垂直的直线交直线于点,且面积为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】微信运动已经成为当下最热门的健身方式,小李的微信朋友圈内也有大量的好友参加了微信运动.”他随机的选取了其中30人,记录了他们某一天走路的步数,将数据整理如下:

步数

人数

5

13

12

1)若采用样本估计总体的方式,试估计小李所有微信好友中每日走路步数超过5000步的概率;

2)已知某人一天的走路步数若超过8000步则他被系统评定为积极型,否则评定为懈怠型”.将这30人按照积极型懈怠型分成两层,进行分层抽样,从中抽取5人,将这5人中属于积极型的人依次记为,属于懈怠型的人依次记为,现再从这5人中随机抽取2人接受问卷调查.

i)试用所给字母列举出所有可能的抽取结果;

ii)设M为事件抽取的2人来自不同的类型,求事件M发生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆,圆心为坐标原点的单位圆OC的内部,且与C有且仅有两个公共点,直线C只有一个公共点.

1)求C的标准方程;

2)设不垂直于坐标轴的动直线l过椭圆C的左焦点F,直线lC交于AB两点,且弦AB的中垂线交x轴于点P,试求的面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥P-ABC中,,平面平面ABC,点D在线段BC上,且EF分别为线段PCAB的中点,点GPD上的动点.

1)证明:.

2)当平面PAC时,求直线PA与平面EFG所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】互联网+”智慧城市的重要内容,A市在智慧城市的建设中,为方便市民使用互联网,在主城区覆盖了免费WiFi为了解免费WiFiA市的使用情况,调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到如下列联表(单位:人):

经常使用免费WiFi

偶尔或不用免费WiFi

合计

45岁及以下

70

30

100

45岁以上

60

40

100

合计

130

70

200

1)根据以上数据,判断是否有90%的把握认为A市使用免费WiFi的情况与年龄有关;

2)将频率视为概率,现从该市45岁以上的市民中用随机抽样的方法每次抽取1人,共抽取3.记被抽取的3人中偶尔或不用免费WiFi的人数为X,若每次抽取的结果是相互独立的,求X的分布列,数学期望EX)和方差DX.附:,其中.

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目: 来源: 题型:

【题目】古希腊数学家阿波罗尼斯在其巨著《圆锥曲线论》中提出在同一平面上给出三点,若其中一点到另外两点的距离之比是一个大于零且不等于1的常数,则该点轨迹是一个圆现在,某电信公司要在甲、乙、丙三地搭建三座5G信号塔来构建一个三角形信号覆盖区域,以实现5G商用,已知甲、乙两地相距4公里,丙、甲两地距离是丙、乙两地距离的倍,则这个三角形信号覆盖区域的最大面积(单位:平方公里)是(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知集合是满足下列性质的函数的全体,存在实数,对于定义域内的任意均有成立,称数对为函数的“伴随数对”.

(1)判断是否属于集合,并说明理由;

(2)若函数,求满足条件的函数的所有“伴随数对”;

(3)若,都是函数的“伴随数对”,当时,;当时,.求当时,函数的零点.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,数列的前项和为,且.

(1)求证:数列是等比数列,并求出通项公式;

(2)对于任意(其中,,均为正整数),若的所有乘积的和记为,试求的值;

(3)设,,若数列的前项和为,是否存在这样的实数,使得对于所有的都有成立,若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某种笼具由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为,高为,圆锥的母线长为.

1)求这种笼具的体积(结果精确到0.1);

2)现要使用一种纱网材料制作50笼具,该材料的造价为每平方米8元,共需多少元?

查看答案和解析>>

同步练习册答案