科目: 来源: 题型:
【题目】已知椭圆的离心率为,短轴长为.
(1)求的方程;
(2)如图,经过椭圆左顶点且斜率为的直线与交于两点,交轴于点,点为线段的中点,若点关于轴的对称点为,过点作(为坐标原点)垂直的直线交直线于点,且面积为,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】“微信运动”已经成为当下最热门的健身方式,小李的微信朋友圈内也有大量的好友参加了“微信运动.”他随机的选取了其中30人,记录了他们某一天走路的步数,将数据整理如下:
步数 | |||
人数 | 5 | 13 | 12 |
(1)若采用样本估计总体的方式,试估计小李所有微信好友中每日走路步数超过5000步的概率;
(2)已知某人一天的走路步数若超过8000步则他被系统评定为“积极型”,否则评定为“懈怠型”.将这30人按照“积极型”、“懈怠型”分成两层,进行分层抽样,从中抽取5人,将这5人中属于“积极型”的人依次记为,属于“懈怠型”的人依次记为,现再从这5人中随机抽取2人接受问卷调查.
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设M为事件“抽取的2人来自不同的类型”,求事件M发生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆,圆心为坐标原点的单位圆O在C的内部,且与C有且仅有两个公共点,直线与C只有一个公共点.
(1)求C的标准方程;
(2)设不垂直于坐标轴的动直线l过椭圆C的左焦点F,直线l与C交于A,B两点,且弦AB的中垂线交x轴于点P,试求的面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥P-ABC中,,平面平面ABC,点D在线段BC上,且,E,F分别为线段PC,AB的中点,点G是PD上的动点.
(1)证明:.
(2)当平面PAC时,求直线PA与平面EFG所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】“互联网+”是“智慧城市”的重要内容,A市在智慧城市的建设中,为方便市民使用互联网,在主城区覆盖了免费WiFi为了解免费WiFi在A市的使用情况,调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到如下列联表(单位:人):
经常使用免费WiFi | 偶尔或不用免费WiFi | 合计 | |
45岁及以下 | 70 | 30 | 100 |
45岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,判断是否有90%的把握认为A市使用免费WiFi的情况与年龄有关;
(2)将频率视为概率,现从该市45岁以上的市民中用随机抽样的方法每次抽取1人,共抽取3次.记被抽取的3人中“偶尔或不用免费WiFi”的人数为X,若每次抽取的结果是相互独立的,求X的分布列,数学期望E(X)和方差D(X).附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目: 来源: 题型:
【题目】古希腊数学家阿波罗尼斯在其巨著《圆锥曲线论》中提出“在同一平面上给出三点,若其中一点到另外两点的距离之比是一个大于零且不等于1的常数,则该点轨迹是一个圆”现在,某电信公司要在甲、乙、丙三地搭建三座5G信号塔来构建一个三角形信号覆盖区域,以实现5G商用,已知甲、乙两地相距4公里,丙、甲两地距离是丙、乙两地距离的倍,则这个三角形信号覆盖区域的最大面积(单位:平方公里)是( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合是满足下列性质的函数的全体,存在实数,对于定义域内的任意均有成立,称数对为函数的“伴随数对”.
(1)判断是否属于集合,并说明理由;
(2)若函数,求满足条件的函数的所有“伴随数对”;
(3)若,都是函数的“伴随数对”,当时,;当时,.求当时,函数的零点.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,数列的前项和为,且.
(1)求证:数列是等比数列,并求出通项公式;
(2)对于任意(其中,,均为正整数),若和的所有乘积的和记为,试求的值;
(3)设,,若数列的前项和为,是否存在这样的实数,使得对于所有的都有成立,若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某种“笼具”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为,高为,圆锥的母线长为.
(1)求这种“笼具”的体积(结果精确到0.1);
(2)现要使用一种纱网材料制作50个“笼具”,该材料的造价为每平方米8元,共需多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com