相关习题
 0  265834  265842  265848  265852  265858  265860  265864  265870  265872  265878  265884  265888  265890  265894  265900  265902  265908  265912  265914  265918  265920  265924  265926  265928  265929  265930  265932  265933  265934  265936  265938  265942  265944  265948  265950  265954  265960  265962  265968  265972  265974  265978  265984  265990  265992  265998  266002  266004  266010  266014  266020  266028  266669 

科目: 来源: 题型:

【题目】杨辉三角是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,第行的数字之和为______;去除所有为1的项,依此构成数列233464510105,则此数列的前46项和为______.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论的单调性.

(2)试问是否存在,使得恒成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】当前,以立德树人为目标的课程改革正在有序推进. 高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施. 某地区2018年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20. 某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到右边频率分布直方图,且规定计分规则如下表:

(1)现从样本的100名学生中,任意选取2人,求两人得分之和不大于33分的概率;

(2)若该校初三年级所有学生的跳绳个数服从正态分布,用样本数据的平均值和方差估计总体的期望和方差,已知样本方差 (各组数据用中点值代替). 根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:

(ⅰ)预估全年级恰好有2000名学生时,正式测试每分钟跳182个以上的人数;(结果四舍五入到整数)

(ⅱ)若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为,求随机变量的分布列和期望. 附:若随机变量服从正态分布,则.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 的离心率为,椭圆的四个顶点围成的四边形的面积为4.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)直线与椭圆交于 两点, 的中点在圆上,求为坐标原点)面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形均为菱形,,且.

1)求证:平面

2)求二面角的余弦值;

3)若为线段上的一点,满足直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知满足约束条件,若目标函数的最小值为-5,则的最大值为( )

A. 2B. 3

C. 4D. 5

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= aR,e为自然对数的底数)

(Ⅰ)当a=1时,求f(x)的单调区间;

(Ⅱ)若函数f(x)在 上无零点,求a的最小值;

(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的焦点在x轴上,一个顶点为,离心率为,过椭圆的右焦点F的直线l与坐标轴不垂直,且交椭圆于AB两点.

求椭圆的方程;

设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得CBN三点共线?若存在,求出定点的坐标;若不存在,说明理由;

,是线段为坐标原点上的一个动点,且,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形,,,侧面底面,是等边三角形,,点分别是棱的中点 .

(Ⅰ)求证:平面

(Ⅱ)求二面角的大小;

(Ⅲ)在线段上存在一点,使平面,且,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】网购逐步走入百姓生活,网络(电子)支付方面的股票受到一些股民的青睐.某单位4位热爱炒股的好朋友研究后决定购买“生意宝”和“九州通“这两支股票中的一支.他们约定:每人通过掷一枚质地均匀的骰子决定购买哪支股票,掷出点数为56的人买“九州通”股票,掷出点数为小于5的人买“生意宝”股票,且必须从“生意宝”和“九州通”这两支股票中选择一支股票购买.

1)求这4人中恰有1人购买“九州通”股票的機率;

2)用分别表示这4人中购买“生意宝”和“九州通”股票的人数,记,求随机变量X的分布列与数学期望.

查看答案和解析>>

同步练习册答案