相关习题
 0  265845  265853  265859  265863  265869  265871  265875  265881  265883  265889  265895  265899  265901  265905  265911  265913  265919  265923  265925  265929  265931  265935  265937  265939  265940  265941  265943  265944  265945  265947  265949  265953  265955  265959  265961  265965  265971  265973  265979  265983  265985  265989  265995  266001  266003  266009  266013  266015  266021  266025  266031  266039  266669 

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数).为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.

1)求曲线的普通方程和极坐标方程;

2)设直线与曲线交于两点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数().

1)讨论的单调性;

2)若对恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.

1)当时,求某个时间段需要检查污染源处理系统的概率;

2)若每套环境监测系统运行成本为300/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆()的上顶点为,左焦点为,离心率为,直线与圆相切.

1)求椭圆的标准方程;

2)设过点且斜率存在的直线与椭圆相交于两点,线段的垂直平分线交轴于点,试判断是否为定值?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱中,已知四边形为矩形,的角平分线.

1)求证:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】半正多面体(semiregular solid) 亦称阿基米德多面体,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】我国古代典籍《周易》用描述万物的变化,每一卦由六爻组成.其中有一种起卦方法称为金钱起卦法,其做法为:取三枚相同的钱币合于双手中,上下摇动数下使钱币翻滚摩擦,再随意抛撒钱币到桌面或平盘等硬物上,如此重复六次,得到六爻.若三枚钱币全部正面向上或全部反面向上,就称为变爻.若每一枚钱币正面向上的概率为,则一卦中恰有两个变爻的概率为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】设数列的前项和为,对一切,点都在函数的图象上.

1)求,归纳数列的通项公式(不必证明).

2)将数列依次按1项、2项、3项、4项循环地分为,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值.

3)设为数列的前项积,且,求数列的最大项.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为,(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C1ρ2cosθ

(1)求C1C2交点的直角坐标;

(2)若直线l与曲线C1C2分别相交于异于原点的点MN,求|MN|的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)设函数(其中的导函数),判断上的单调性;

(2)若函数在定义域内无零点,试确定正数的取值范围.

查看答案和解析>>

同步练习册答案