相关习题
 0  265857  265865  265871  265875  265881  265883  265887  265893  265895  265901  265907  265911  265913  265917  265923  265925  265931  265935  265937  265941  265943  265947  265949  265951  265952  265953  265955  265956  265957  265959  265961  265965  265967  265971  265973  265977  265983  265985  265991  265995  265997  266001  266007  266013  266015  266021  266025  266027  266033  266037  266043  266051  266669 

科目: 来源: 题型:

【题目】国家每年都会对中小学生进行体质健康监测,一分钟跳绳是监测的项目之一.今年某小学对本校六年级300名学生的一分钟跳绳情况做了统计,发现一分钟跳绳个数最低为10,最高为189.现将跳绳个数分成6组,并绘制出如下的频率分布直方图.

1)若一分钟跳绳个数达到160为优秀,求该校六年级学生一分钟跳绳为优秀的人数;

2)上级部门要对该校体质监测情况进行复查,发现每组男、女学生人数比例有很大差别,组男、女人数之比为组男、女人数之比为组男、女人数之比为组男、女人数之比为组男、女人数之比为组男、女人数之比为.试估计此校六年级男生一分钟跳绳个数的平均数(同一组中的数据用该组区间的中点值作代表,结果保留整数).

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有6位外国人,其中关注此次大阅兵的有5位,若从这6位外国人中任意选取2位做一次采访,则被采访者都关注了此次大阅兵的概率为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)若对任意恒成立,求的取值范围;

2)若函数有两个不同的零点,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线与抛物线交于两点,且的面积为16为坐标原点).

1)求的方程;

2)直线经过的焦点不与轴垂直,与交于两点,若线段的垂直平分线与轴交于点,证明:为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂加工某种零件需要经过三道工序,且每道工序的加工都相互独立,三道工序加工合格的概率分别为.三道工序都合格的零件为一级品;恰有两道工序合格的零件为二级品;其它均为废品,且加工一个零件为二级品的概率为.

1)求

2)若该零件的一级品每个可获利200元,二级品每个可获利100元,每个废品将使工厂损失50元,设一个零件经过三道工序加工后最终获利为元,求的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称强军利刃”“强国之盾,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有10位外国人,其中关注此次大阅兵的有8位,若从这10位外国人中任意选取3位做一次采访,则被采访者中至少有2位关注此次大阅兵的概率为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.证明:

1)存在唯一x0∈(0,1),使f(x0)0

2)存在唯一x1∈(12),使g(x1)0,且对(1)中的x0,有x0x1<2

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂生产某种产品,为了控制质量,质量控制工程师要在产品出厂前对产品进行检验.现有)份产品,有以下两种检验方式:(1)逐份检验,则需要检验次;(2)混合检验,将这份产品混合在一起作为一组来检验.若检测通过,则这份产品全部为正品,因而这份产品只要检验一次就够了;若检测不通过,为了明确这份产品究竟哪几份是次品,就要对这份产品逐份检验,此时这份产品的检验次数总共为次.假设在接受检验的样本中,每份样本的检验结果是正品还是次品都是独立的,且每份样本是次品的概率为

1)如果,采用逐份检验方式进行检验,求检测结果恰有两份次品的概率;

2)现对份产品进行检验,运用统计概率相关知识回答:当满足什么关系时,用混合检验方式进行检验可以减少检验次数?

3)①当)时,将这份产品均分为两组,每组采用混合检验方式进行检验,求检验总次数的数学期望;

②当,且)时,将这份产品均分为组,每组采用混合检验方式进行检验,写出检验总次数的数学期望(不需证明).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左、右顶点分别为CD,且过点P是椭圆上异于CD的任意一点,直线PCPD的斜率之积为

1)求椭圆的方程;

2O为坐标原点,设直线CP交定直线x = m于点Mm为何值时,为定值.

查看答案和解析>>

同步练习册答案