相关习题
 0  265869  265877  265883  265887  265893  265895  265899  265905  265907  265913  265919  265923  265925  265929  265935  265937  265943  265947  265949  265953  265955  265959  265961  265963  265964  265965  265967  265968  265969  265971  265973  265977  265979  265983  265985  265989  265995  265997  266003  266007  266009  266013  266019  266025  266027  266033  266037  266039  266045  266049  266055  266063  266669 

科目: 来源: 题型:

【题目】设椭圆的右顶点为,上顶点为.已知椭圆的离心率为.

)求椭圆的标准方程;

)设直线与椭圆交于两点,且点在第二象限.延长线交于点,若的面积是面积的3倍,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害,每只红铃虫的平均产卵数y和平均温度x有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.(表中

平均温度

21

23

25

27

29

32

35

平均产卵数/

7

11

21

24

66

115

325

27.429

81.286

3.612

40.182

147.714

1)根据散点图判断,(其中自然对数的底数)哪一个更适宜作为平均产卵数y关于平均温度x的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求出yx的回归方程.(计算结果精确到小数点后第三位)

2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为.

①记该地今后5年中,恰好需要3次人工防治的概率为,求的最大值,并求出相应的概率p.

②当取最大值时,记该地今后5年中,需要人工防治的次数为X,求X的数学期望和方差.

附:线性回归方程系数公式.

查看答案和解析>>

科目: 来源: 题型:

【题目】中,.已知分别是的中点.将沿折起,使的位置且二面角的大小是.连接,如图:

(Ⅰ)求证:平面平面

(Ⅱ)求平面与平面所成二面角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】将四个不同的小球放入三个分别标有123号的盒子中,不允许有空盒子的放法有多少种?下列结论正确的有( .

A.B.C.D.18

查看答案和解析>>

科目: 来源: 题型:

【题目】已知是偶函数.

(1)的值;

(2)证明:对任意实数,函数的图象与直线最多只有一个交点;

(3)若函数的图象有且只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知动点到定点的距离之和为4.

(1)求动点的轨迹方程

(2)若轨迹与直线交于两点,且的值.

(3)若点与点在轨迹上,且点在第一象限,点在第二象限,点与点关于原点对称,求证:当时,三角形的面积为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正四棱柱中,底面边长为,侧棱长为4分别为棱的中点,

1)求直线与平面所成角的大小;

2)求点到平面的距离

查看答案和解析>>

科目: 来源: 题型:

【题目】从抛物线上任意一点Px轴作垂线段,垂足为Q,点M是线段上的一点,且满足

(1)求点M的轨迹C的方程;

(2)设直线与轨迹c交于两点,TC上异于的任意一点,直线分别与直线交于两点,以为直径的圆是否过x轴上的定点?若过定点,求出符合条件的定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中.

(1)若是函数的导函数的零点,求的单调区间;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).

1)求这60天每天包裹数量的平均值和中位数;

2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?

3)小明打算将四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过,求他支付的快递费为45元的概率.

查看答案和解析>>

同步练习册答案