相关习题
 0  265871  265879  265885  265889  265895  265897  265901  265907  265909  265915  265921  265925  265927  265931  265937  265939  265945  265949  265951  265955  265957  265961  265963  265965  265966  265967  265969  265970  265971  265973  265975  265979  265981  265985  265987  265991  265997  265999  266005  266009  266011  266015  266021  266027  266029  266035  266039  266041  266047  266051  266057  266065  266669 

科目: 来源: 题型:

【题目】在直角坐标系中,曲线(为参数),曲线(为参数),以O为极点,轴的非负半轴为极轴的极坐标系中,已知曲线的极坐标方程为,记曲线的交点为.

1)求点的极坐标;

2)设曲线相交于AB两点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)求过点且与曲线相切的直线方程;

2)设,其中为非零实数,若有两个极值点,且,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率,且直线与椭圆有且只有一个公共点.

1)求椭圆的标准方程;

2)设直线轴交于点,过点的直线与椭圆交于不同的两点,若,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直三棱柱的所有棱长相等,的中点.

(1)求证:平面

2)当的中点时,求二面角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的原则是:①“盲拍”,即所有参与竞拍的人都是网络报价,每个人并不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞价人的出价从高到低分配名额.某人拟参加201810月份的车牌竞价,他为了预测最低成交价,根据竞拍网站的公告,统计了最近5个月参与竞拍的人数(见表):

月份

2018.04

2018.05

2018.06

2018.07

2018.08

月份编号t

1

2

3

4

5

竞拍人数y(万人)

0.5

0.6

m

1.4

1.7

1)由收集数据的散点图发现,可以线性回归模拟竞拍人数y(万人)与月份编号t之间的相关关系.现用最小二乘法求得y关于t的回归方程为,请求出表中的m的值并预测20189月参与竞拍的人数;

2)某市场调研机构对200位拟参加20189月车牌竞拍人员的报价价格进行了一个抽样调查,得到如下一个频数表:

报价区间(万元)

[12)

[23)

[34)

[45)

[56)

[67]

频数

20

60

60

30

20

10

i)求这200位竞拍人员报价的平均值(同一区间的报价可用该价格区间的中点值代替)

ii)假设所有参与竞拍人员的报价X服从正态分布,且(i)中所求的样本平均数的估值,.20189月实际发放车牌数量为3174,请你合理预测(需说明理由)竞拍的最低成交价.参考公式及数据:若随机变量Z服从正态分布,则:.

查看答案和解析>>

科目: 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线C:()的焦点F到直线的距离为AB是过抛物线C焦点F的动弦,O是坐标原点,过AB两点分别作此抛物线的切线,两切线相交于点P

1)求证:

2)若动弦AB不经过点,直线AB与准线l相交于点N,记MAMBMN的斜率分别为.问:是否存在常数λ,使得在弦AB运动时恒成立?若存在,求λ的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆E:()的左右焦点分别是,离心率,点在椭圆E上.

1)求椭圆E的方程;

2)如图,分别过作两条互相垂直的弦ACBD,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知中心为原点O,焦点在x轴上的椭圆C的离心率为,且椭圆C的长轴是圆的一条直径.

1)求椭圆C的方程;

2)若不过原点的直线l与椭圆C交于AB两点,与圆M交于PQ两点,且直线OAABOB的斜率成等比数列,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

Ⅰ)求曲线的普通方程与曲线的直角坐标方程;

Ⅱ)设为曲线上的动点,求点上点的距离的最小值,并求此时点的坐标.

查看答案和解析>>

同步练习册答案