科目: 来源: 题型:
【题目】在直角坐标系中,曲线:(为参数),曲线:(为参数),以O为极点,轴的非负半轴为极轴的极坐标系中,已知曲线的极坐标方程为,记曲线与的交点为.
(1)求点的极坐标;
(2)设曲线与相交于A,B两点,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:的离心率,且直线与椭圆有且只有一个公共点.
(1)求椭圆的标准方程;
(2)设直线与轴交于点,过点的直线与椭圆交于不同的两点,若,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】为缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的原则是:①“盲拍”,即所有参与竞拍的人都是网络报价,每个人并不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞价人的出价从高到低分配名额.某人拟参加2018年10月份的车牌竞价,他为了预测最低成交价,根据竞拍网站的公告,统计了最近5个月参与竞拍的人数(见表):
月份 | 2018.04 | 2018.05 | 2018.06 | 2018.07 | 2018.08 |
月份编号t | 1 | 2 | 3 | 4 | 5 |
竞拍人数y(万人) | 0.5 | 0.6 | m | 1.4 | 1.7 |
(1)由收集数据的散点图发现,可以线性回归模拟竞拍人数y(万人)与月份编号t之间的相关关系.现用最小二乘法求得y关于t的回归方程为,请求出表中的m的值并预测2018年9月参与竞拍的人数;
(2)某市场调研机构对200位拟参加2018年9月车牌竞拍人员的报价价格进行了一个抽样调查,得到如下一个频数表:
报价区间(万元) | [1,2) | [2,3) | [3,4) | [4,5) | [5,6) | [6,7] |
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求这200位竞拍人员报价的平均值(同一区间的报价可用该价格区间的中点值代替);
(ii)假设所有参与竞拍人员的报价X服从正态分布,且为(i)中所求的样本平均数的估值,.若2018年9月实际发放车牌数量为3174,请你合理预测(需说明理由)竞拍的最低成交价.参考公式及数据:若随机变量Z服从正态分布,则:,,.
查看答案和解析>>
科目: 来源: 题型:
【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:
甲说:“是或作品获得一等奖”; 乙说:“ 作品获得一等奖”;
丙说:“ 两件作品未获得一等奖”; 丁说:“是作品获得一等奖”.
评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知抛物线C:()的焦点F到直线的距离为.AB是过抛物线C焦点F的动弦,O是坐标原点,过A,B两点分别作此抛物线的切线,两切线相交于点P.
(1)求证:.
(2)若动弦AB不经过点,直线AB与准线l相交于点N,记MA,MB,MN的斜率分别为,,.问:是否存在常数λ,使得在弦AB运动时恒成立?若存在,求λ的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知中心为原点O,焦点在x轴上的椭圆C的离心率为,且椭圆C的长轴是圆的一条直径.
(1)求椭圆C的方程;
(2)若不过原点的直线l与椭圆C交于A,B两点,与圆M交于P、Q两点,且直线OA,AB,OB的斜率成等比数列,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知曲线的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求曲线的普通方程与曲线的直角坐标方程;
(Ⅱ)设为曲线上的动点,求点到上点的距离的最小值,并求此时点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com