相关习题
 0  265909  265917  265923  265927  265933  265935  265939  265945  265947  265953  265959  265963  265965  265969  265975  265977  265983  265987  265989  265993  265995  265999  266001  266003  266004  266005  266007  266008  266009  266011  266013  266017  266019  266023  266025  266029  266035  266037  266043  266047  266049  266053  266059  266065  266067  266073  266077  266079  266085  266089  266095  266103  266669 

科目: 来源: 题型:

【题目】已知函数有两个零点.

1)求实数的取值范围;

2)设的两个零点,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义在上的函数同时满足以下条件:①上为减函数,上是增函数;②是偶函数;③处的切线与直线垂直.

1)求函数的解析式;

2)设,若对,使成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为).

(I)求直线的极坐标方程及曲线的直角坐标方程;

(Ⅱ)已知是直线上的一点,是曲线上的一点, ,若的最大值为2,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】据长期统计分析,某货物每天的需求量1726之间,日需求量(件)的频率分布如下表所示:

需求量

17

18

19

20

21

22

23

24

25

26

频率

0.12

0.18

0.23

0.13

0.10

0.08

0.05

0.04

0.04

0.03

已知其成本为每件5元,售价为每件10.若供大于求,则每件需降价处理,处理价每件2.假设每天的进货量必需固定.

1)设每天的进货量为,视日需求量的频率为概率,求在每天进货量为的条件下,日销售量的期望值(用表示);

2)在(1)的条件下,写出的关系式,并判断为何值时,日利润的均值最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 .

(1)讨论函数的单调性;

(2)若函数在区间有唯一零点,证明: .

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥的底面是菱形,平面底面分别是的中点,.

1)求证:

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为(

A.B.

C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】法国有个名人叫做布莱尔·帕斯卡,他认识两个赌徒,这两个赌徒向他提出一个问题,他们说,他们下赌金之后,约定谁先赢满5局,谁就获得全部赌金700法郎,赌了半天,甲赢了4局,乙赢了3局,时间很晚了,他们都不想再赌下去了.假设每局两赌徒输赢的概率各占,每局输赢相互独立,那么这700法郎如何分配比较合理(

A.400法郎,乙300法郎B.500法郎,乙200法郎

C.525法郎,乙175法郎D.350法郎,乙350法郎

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且交椭圆两点,点在直线上的射影依次为.

(1)求椭圆的方程;

(2)若直线轴于点,且,当变化时,证明: 为定值;

(3)当变化时,直线是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(Ⅰ)记,试判断函数的极值点的情况;

(Ⅱ)若有且仅有两个整数解,求实数的取值范围.

查看答案和解析>>

同步练习册答案