科目: 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出直线的直角坐标方程;
(2)设点的坐标为,若点是曲线截直线所得线段的中点,求的斜率.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:若无穷数列满足是公比为的等比数列,则称数列为“数列”.设数列中
(1)若,且数列是“数列”,求数列的通项公式;
(2)设数列的前项和为,且,请判断数列是否为“数列”,并说明理由;
(3)若数列是“数列”,是否存在正整数,使得?若存在,请求出所有满足条件的正整数;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,是一块半径为4米的圆形铁皮,现打算利用这块铁皮做一个圆柱形油桶.具体做法是从中剪裁出两块全等的圆形铁皮与做圆柱的底面,剪裁出一个矩形做圆柱的侧面(接缝忽略不计),为圆柱的一条母线,点在上,点在的一条直径上,,分别与直线、相切,都与内切.
(1)求圆形铁皮半径的取值范围;
(2)请确定圆形铁皮与半径的值,使得油桶的体积最大.(不取近似值)
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(其中为参数,为的倾斜角,且),曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程及曲线的直角坐标方程;
(2)已知点,曲线与交于两点,与交于点,且,求的普通方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥中,顶点在底面上的投影在棱上,,,,为的中点.
(1)求证:平面;
(2)求二面角的余弦值;
(3)已知点为的中点,在棱上是否存在点,使得平面,若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,展现中国文化阴阳转化、对立统一的哲学理念.定义:图象能将圆的周长和面积同时等分成两部分的函数称为圆的一个“太极函数”,则下列命题正确的是___________.
(1)函数可以同时是无数个圆的“太极函数”;
(2)函数可以是某个圆的“太极函数”;
(3)若函数是某个圆的“太极函数”,则函数的图象一定是中心对称图形;
(4)对于任意一个圆,其“太极函数”有无数个.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,圆经过伸缩变换后得到曲线.以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为.
(1)求曲线的直角坐标方程及直线的直角坐标方程;
(2)设点是上一动点,求点到直线的距离的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知是抛物线上的两个点,点的坐标为,直线的斜率为.设抛物线的焦点在直线的下方.
(Ⅰ)求k的取值范围;
(Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为. 判断四边形是否为梯形,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com