科目: 来源: 题型:
【题目】明初出现了一大批杰出的骑兵将领,比如徐达、常遇春、李文忠、蓝玉和朱棣.明初骑兵军团击败了不可一世的蒙古骑兵,是当时世界上最强骑兵军团.假设在明军与元军的某次战役中,明军有8位将领,善用骑兵的将领有5人;元军有8位将领,善用骑兵的有4人.
(1)现从明军将领中随机选取4名将领,求至多有3名是善用骑兵的将领的概率;
(2)在明军和元军的将领中各随机选取2人,为善用骑兵的将领的人数,写出的分布列,并求.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在上的偶函数满足,且,当时,.已知方程在区间上所有的实数根之和为.将函数的图象向右平移个单位长度,得到函数的图象,则__________,__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆的左、右顶点分别为,上、下顶点分别为,左、右焦点分别为,,离心率为.
(1)求椭圆的方程;
(2)过右焦点的直线与椭圆相交于两点,试探究在轴上是否存在定点,使得可为定值?若存在,求出点的坐标,若不存在,请说明理由?
查看答案和解析>>
科目: 来源: 题型:
【题目】一个不透明的盒子中关有蝴蝶、蜜蜂和蜻蜓三种昆虫共11只,现在盒子上开一小孔,每次只能飞出1只昆虫(假设任意1只昆虫等可能地飞出).若有2只昆虫先后任意飞出(不考虑顺序),则飞出的是蝴蝶或蜻蜓的概率是.
(1)求盒子中蜜蜂有几只;
(2)若从盒子中先后任意飞出3只昆虫(不考虑顺序),记飞出蜜蜂的只数为X,求随机变量X的分布列与数学期望E(X).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=|2x﹣a|,g(x)=x+1.
(1)若a=1,求不等式f(x)≤1的解集;
(2)对任意的x∈R,f(x)+|g(x)|≥a2+2a(a>0)恒成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且交椭圆于两点,点在直线上的射影依次为.
(1)求椭圆的方程;
(2)若直线交轴于点,且,当变化时,证明: 为定值;
(3)当变化时,直线与是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某种商品在50个不同地区的零售价格全部介于13元与18元之间,将各地价格按如下方式分成五组:第一组,第二组,……,第五组.如图是按上述分组方法得到的频率分布直方图.
(1)求价格落在内的地区数;
(2)借助频率分布直方图,估计该商品价格的中位数(精确到0.1);
(3)现从,这两组的全部样本数据中,随机选取两个地区的零售价格,记为,,求事件“”的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)证明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为,其中为参数,.在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.
(1)求直线的直角坐标方程与曲线的普通方程;
(2)若是曲线上的动点,为线段的中点.求点到直线的距离的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为(为参数).
(1)求与的交点的直角坐标;
(2)求上的点到直线的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com