相关习题
 0  265945  265953  265959  265963  265969  265971  265975  265981  265983  265989  265995  265999  266001  266005  266011  266013  266019  266023  266025  266029  266031  266035  266037  266039  266040  266041  266043  266044  266045  266047  266049  266053  266055  266059  266061  266065  266071  266073  266079  266083  266085  266089  266095  266101  266103  266109  266113  266115  266121  266125  266131  266139  266669 

科目: 来源: 题型:

【题目】设函数yfx)的定义域为D,若对任意的x1D,总存在x2D,使得fx1fx2)=1,则称函数fx)具有性质M.下列结论:①函数yx3x具有性质M;②函数y3x+5x具有性质M;③若函数ylog8x+2),x[0t]时具有性质M,则t510;④若y具有性质M,则a5.其中正确结论的序号是_____.

查看答案和解析>>

科目: 来源: 题型:

【题目】设曲线E的方程为1,动点Amn),B(﹣mn),C(﹣m,﹣n),Dm,﹣n)在E上,对于结论:①四边形ABCD的面积的最小值为48;②四边形ABCD外接圆的面积的最小值为25π.下面说法正确的是(

A.①错,②对B.①对,②错C.①②都错D.①②都对

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)讨论函数的极值点的个数;

2)若有两个极值点,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】某高校健康社团为调查本校大学生每周运动的时长,随机选取了80名学生,调查他们每周运动的总时长(单位:小时),按照6组进行统计,得到男生、女生每周运动的时长的统计如下(表12),规定每周运动15小时以上(含15小时)的称为“运动合格者”,其中每周运动25小时以上(含25小时)的称为“运动达人”.

1:男生

时长

人数

2

8

16

8

4

2

2:女生

时长

人数

0

4

12

12

8

4

1)从每周运动时长不小于20小时的男生中随机选取2人,求选到“运动达人”的概率;

2)根据题目条件,完成下面列联表,并判断能否有99%的把握认为本校大学生是否为“运动合格者”与性别有关.

每周运动的时长小于15小时

每周运动的时长不小于15小时

总计

男生

女生

总计

参考公式:,其中.

参考数据:

0.40

0.25

0.10

0.010

0.708

1.323

2.706

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;

(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:

超过

不超过

第一种生产方式

第二种生产方式

(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?

附:

查看答案和解析>>

科目: 来源: 题型:

【题目】某市201041—430日对空气污染指数的监测数据如(主要污染物为可吸入颗粒物):617670568191929175818867101103959177868382826479868575714945

样本频率分布表:

分组

频数

频率

[4151

2

[5161

1

[6171

4

[7181

6

[8191

10

[91101

[101111

2

1 完成频率分布表;

2)作出频率分布直方图;

3)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.

查看答案和解析>>

科目: 来源: 题型:

【题目】某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B进行对照试验.两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:

品种A357,359,367,368,375,388,392,399,400,405,412, 414,415,421,423,423,427,430,430,434,443,445,445,451,454

品种B363,371,374,383,385,386,391,392,394,394,395, 397,397,400,401,401,403,406,407,410,412,415,416,422,430

(1)作出茎叶图;

(2)通过观察茎叶图,对品种AB的亩产量及其稳定性进行比较,写出统计结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:

质量指标值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

频数

6

26

38

22

8

I)在答题卡上作出这些数据的频率分布直方图:

II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);

III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合质量指标值不低于95的产品至少要占全部产品的80%的规定?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EGE1G1的长分别为14cm和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;

(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,有一块半圆形空地,开发商计划建造一个矩形游泳池及左右两侧两个大小相同的矩形休息区,其中半圆的圆心为,半径为,矩形的一边上,矩形的一边上,点在圆周上,在直径上,且,设.若每平方米游泳池的造价和休息区造价分别为.

1)记游泳池及休息区的总造价为,求的表达式;

2)为进行投资预算,当为何值时,总造价最大?并求出总造价的最大值.

查看答案和解析>>

同步练习册答案