相关习题
 0  265950  265958  265964  265968  265974  265976  265980  265986  265988  265994  266000  266004  266006  266010  266016  266018  266024  266028  266030  266034  266036  266040  266042  266044  266045  266046  266048  266049  266050  266052  266054  266058  266060  266064  266066  266070  266076  266078  266084  266088  266090  266094  266100  266106  266108  266114  266118  266120  266126  266130  266136  266144  266669 

科目: 来源: 题型:

【题目】已知函数

1)若为单调函数,求a的取值范围;

2)若函数仅一个零点,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】“科技引领,布局未来”科技研发是企业发展的驱动力量。年,某企业连续年累计研发投入搭亿元,我们将研发投入与经营投入的比值记为研发投入占营收比,这年间的研发投入(单位:十亿元)用右图中的折现图表示,根据折线图和条形图,下列结论错误的使( )

A. 年至年研发投入占营收比增量相比年至年增量大

B. 年至年研发投入增量相比年至年增量小

C. 该企业连续年研发投入逐年增加

D. 该企业来连续年来研发投入占营收比逐年增加

查看答案和解析>>

科目: 来源: 题型:

【题目】从某学校高三年级共1000名男生中随机抽取50人测量身高,据测量,被测学生身高全部介于之间,将测量结果按如下方式分成八组:第一组,第二组,…,第八组.如图是按上述分组方法得到的频率分布直方图的一部分.其中第六组、第七组、第八组人数依次构成等差数列.

(1)求第六组、第七组的频率,并估计高三年级全体男生身高在以上(含)的人数;

(2)学校决定让这五十人在运动会上组成一个高旗队,在这五十人中要选身高在以上(含)的两人作为队长,求这两人在同一组的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于MN两点。

(1)写出直线l的普通方程和曲线C的直角坐标方程:

(2)若成等比数列,求a的值。

查看答案和解析>>

科目: 来源: 题型:

【题目】过椭圆的左顶点斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.

1)求椭圆的离心率;

2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】某县一中学的同学为了解本县成年人的交通安全意识情况,利用假期进行了一次全县成年人安全知识抽样调查.已知该县成年人中的拥有驾驶证,先根据是否拥有驾驶证,用分层抽样的方法抽取了100名成年人,然后对这100人进行问卷调查,所得分数的频率分布直方图如下图所示.规定分数在80以上(含80)的为“安全意识优秀”.

拥有驾驶证

没有驾驶证

合计

得分优秀

得分不优秀

25

合计

100

(1)补全上面的列联表,并判断能否有超过的把握认为“安全意识优秀与是否拥有驾驶证”有关?

(2)若规定参加调查的100人中分数在70以上(含70)的为“安全意识优良”,从参加调查的100人中根据安全意识是否优良,按分层抽样的方法抽出5人,再从5人中随机抽取3人,试求抽取的3人中恰有一人为“安全意识优良”的概率.

附表及公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为(为参数,),以坐标原点为极点,以轴的 非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

2)若曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)若函数的图象在处的切线与轴平行,求的值;

2)当时,恒成立,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某人经营淡水池塘养草鱼,根据过去期的养殖档案,该池塘的养殖重量(百斤)都在百斤以上,其中不足百斤的期,不低于百斤且不超过百斤的有期,超过百斤的有.根据统计,该池塘的草鱼重量的增加量(百斤)与使用某种饵料的质量(百斤)之间的关系如图所示.

鱼的重量(单位:百斤)

冲水机运行台数

1

2

3

1)根据数据可知具有线性相关关系,请建立关于的回归方程;如果此人设想使用某种饵料百斤时,草鱼重量的增加量须多于百斤,请根据回归方程计算,确定此方案是否可行?并说明理由.

2)养鱼的池塘对水质含氧与新鲜度要求较高,故养殖户需设置若干台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量有关,并有如下关系:

若某台增氧冲水机运行,则该台冲水机每期盈利千元;若某台冲水机未运行,则该台冲水机每期亏损千元.以频率 作为概率,养殖户欲使每期冲水机总利润的均值达到最大,应安装几台增氧冲水机?

:对于一组数据,其回归方程的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,.

1)求证:平面平面

2)若二面角的正切值为,求与平面所成角的余弦值.

查看答案和解析>>

同步练习册答案