相关习题
 0  265957  265965  265971  265975  265981  265983  265987  265993  265995  266001  266007  266011  266013  266017  266023  266025  266031  266035  266037  266041  266043  266047  266049  266051  266052  266053  266055  266056  266057  266059  266061  266065  266067  266071  266073  266077  266083  266085  266091  266095  266097  266101  266107  266113  266115  266121  266125  266127  266133  266137  266143  266151  266669 

科目: 来源: 题型:

【题目】为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下表:

未发病

发病

合计

未注射疫苗

40

注射疫苗

60

合计

100

100

200

现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为.

1)求列联表中的数据的值;

2)在图中绘制发病率的条形统计图,并判断疫苗是否有效?

3)在出错概率不超过的条件下能否认为疫苗有效?

附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足为线段的中点,且.

1)求椭圆的离心率;

2)若过三点的圆与直线相切,求椭圆的方程;

3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形?如果存在,求出的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】本小题满分12如图三棱柱ABC-A1B1C1,CA=CBAB=A A1BA A1=60°.

)证明ABA1C;

)若平面ABC平面AA1B1B,AB=CB直线A1C 与平面BB1C1C所成角正弦值。

查看答案和解析>>

科目: 来源: 题型:

【题目】某超市从年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取个,并按分组,得到频率分布直方图如图,假设甲、乙两种酸奶独立销售且日销售量相互独立.

1)写出频率分布直方图甲中的的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,试比较的大小;(只需写出结论)

2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于箱且另一个不高于箱的概率;

3)设表示在未来天内甲种酸奶的日销售量不高于箱的天数,以日留住量落入各组的频率为概率,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)当时,求的单调区间;

2)当,讨论的零点个数;

查看答案和解析>>

科目: 来源: 题型:

【题目】某商场举行双12有奖促销活动,顾客购买168元的商品后即可抽奖,抽奖方法是:从装有2个红球1个白球的甲箱与装有2个红球1个白球的乙箱中,各随机摸出1个球,这些球除颜色,标号外都一样.若摸出的2个球颜色相同则中奖,否则不中奖.

1)用球的标号列出所有可能的摸出结果;

2)小明根据经验认为:摸到同色球一般来说更为难得,所以猜测中奖的概率小于不中奖的概率,你认为小明的猜想正确吗?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)若函数在点处的切线方程为,求的值;

2)若,函数在区间内有唯一零点,求的取值范围;

3)若对任意的,均有,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左顶点为A1,右焦点为F2,过点F2作垂直于x轴的直线交该椭圆于MN两点,直线A1M的斜率为

)求椭圆的离心率;

)若△A1MN的外接圆在M处的切线与椭圆相交所得弦长为,求椭圆方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一次期末数学测试中,唐老师任教班级学生的考试得分情况如表所示:

分数区间

人数

2

8

32

38

20

1)根据上述表格,试估计唐老师所任教班级的学生在本次期末数学测试的平均成绩;

2)现从成绩在中按照分数段,采取分层抽样的方法随机抽取5人,再在这5人中随机抽取2人作小题得分分析,求恰有1人的成绩在上的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中, 平面 .

(I)求异面直线所成角的余弦值;

(II)求证: 平面

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案