相关习题
 0  265967  265975  265981  265985  265991  265993  265997  266003  266005  266011  266017  266021  266023  266027  266033  266035  266041  266045  266047  266051  266053  266057  266059  266061  266062  266063  266065  266066  266067  266069  266071  266075  266077  266081  266083  266087  266093  266095  266101  266105  266107  266111  266117  266123  266125  266131  266135  266137  266143  266147  266153  266161  266669 

科目: 来源: 题型:

【题目】若动点到两点的距离之比为.

1)求动点的轨迹的方程;

2)若为椭圆上一点,过点作曲线的切线与椭圆交于另一点,求面积的取值范围(为坐标原点).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示的几何体中,为直三棱柱,四边形为平行四边形, .

1)若,证明:四点共面,且

2)若,二面角的余弦值为,求直线与平面所成角.

查看答案和解析>>

科目: 来源: 题型:

【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80分及以上的花苗为优质花苗.

1)用样本估计总体,以频率作为概率,若在两块实验地随机抽取3株花苗,求所抽取的花苗中优质花苗数的分布列和数学期望;

2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.

优质花苗

非优质花苗

合计

甲培育法

20

乙培育法

10

合计

附:下面的临界值表仅供参考.

0.050

0.010

0.001

3.841

6.635

10.828

(参考公式:,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴的建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程;

2)若点与点分别为曲线动点,求的最小值,并求此时的点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数处的切线方程为.

1)求的值;

2)当时,恒成立,求整数的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆为椭圆的右焦点,为椭圆上一点,的离心率

1)求椭圆的标准方程;

2)斜率为的直线过点交椭圆两点,线段的中垂线交轴于点,试探究是否为定值,如果是,请求出该定值;如果不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校为了解高三男生的体能达标情况,抽调了120名男生进行立定跳远测试,根据统计数据得到如下的频率分布直方图.若立定跳远成绩落在区间的左侧,则认为该学生属“体能不达标的学生,其中分别为样本平均数和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).

1)若该校高三某男生的跳远距离为,试判断该男生是否属于“体能不达标”的学生?

2)该校利用分层抽样的方法从样本区间中共抽出5人,再从中选出两人进行某体能训练,求选出的两人中恰有一人跳远距离在的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,圆柱的轴截面是边长为2的正方形,点P是圆弧上的一动点(不与重合),点Q是圆弧的中点,且点在平面的两侧.

1)证明:平面平面

2)设点P在平面上的射影为点O,点分别是的重心,当三棱锥体积最大时,回答下列问题.

i)证明:平面

ii)求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】“不忘初心、牢记使命”主题教育活动正在全国开展,某区政府为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n名,获得了他们一周参加主题教育活动的时间(单位:时)的频率分布直方图,如图所示,已知参加主题教育活动的时间在内的人数为92.

1)估计这些党员干部一周参与主题教育活动的时间的平均值;

2)用频率估计概率,如果计划对全区一周参与主题教育活动的时间在内的党员干部给予奖励,且参与时间在内的分别获二等奖和一等奖,通过分层抽样方法从这些获奖人中随机抽取5人,再从这5人中任意选取3人,求3人均获二等奖的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)如果方程有两个不相等的解,且,证明:.

查看答案和解析>>

同步练习册答案