科目: 来源: 题型:
【题目】如图,在直四棱柱ABCD-A1B1C1D1中,底面四边形ABCD为菱形,A1A=AB=2,∠ABC=,E,F分别是BC,A1C的中点.
(1)求异面直线EF,AD所成角的余弦值;
(2)点M在线段A1D上, .若CM∥平面AEF,求实数λ的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,以正四棱锥VABCD的底面中心O为坐标原点建立空间直角坐标系Oxyz,其中Ox∥BC,Oy∥AB,E为VC的中点.正四棱锥的底面边长为2a,高为h,且有cos〈,〉=-.
(1)求的值;
(2)求二面角B-VC-D的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在棱长为3的正方体ABCD-A1B1C1D1中,A1E=CF=1.
(1)求两条异面直线AC1与BE所成角的余弦值;
(2)求直线BB1与平面BED1F所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在空间直角坐标系O-xyz中,已知正四棱锥PABCD的高OP=2,点B,D和C,A分别在x轴和y轴上,且AB= ,点M是棱PC的中点.
(1)求直线AM与平面PAB所成角的正弦值;
(2)求二面角A-PB-C的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在棱长为3的正方体ABCDA1B1C1D1中,A1E=CF=1.
(1)求异面直线AC1与D1E所成角的余弦值;
(2)求直线AC1与平面BED1F所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=1,PA=AB= ,点E是棱PB的中点.
(1)求异面直线EC与PD所成角的余弦值;
(2)求二面角B-EC-D的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直三棱柱ABC-A1B1C1中,已知AB⊥AC,AB=2,AC=4,AA1=3,D是BC的中点.
(1) 求直线DC1与平面A1B1D所成角的正弦值;
(2) 求二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥PABCD中,PA⊥底面ABCD,AD∥BC,AB=AC=AD=3,PA=BC=4.
(1)求异面直线PB与CD所成角的余弦值;
(2)求平面PAD与平面PBC所成锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直线PB与CD所成角的大小为,求BC的长;
(Ⅱ)求二面角B-PD-A的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.
(Ⅰ)证明:AB1⊥平面A1B1C1;
(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com