科目: 来源: 题型:
【题目】已知椭圆的两个焦点为、,是与的等差中项,其中、、都是正数,过点和的直线与原点的距离为.
(1)求椭圆的方程;
(2)点是椭圆上一动点,定点,求△面积的最大值;
(3)已知定点,直线与椭圆交于、相异两点.证明:对任意的,都存在实数,使得以线段为直径的圆过点.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,为两非零有理数列(即对任意的,均为有理数),为一无理数列(即对任意的,为无理数).
(1)已知,并且对任意的恒成立,试求的通项公式.
(2)若为有理数列,试证明:对任意的,恒成立的充要条件为.
(3)已知,,对任意的,恒成立,试计算.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图放置的边长为1的正方形 沿 轴滚动(向右为顺时针,向左为逆时针).设顶点 的轨迹方程是,则关于的最小正周期及在其两个相邻零点间的图像与x轴所围区域的面积S的正确结论是( )
A. B.
C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】有下列四个命题:(1)一定存在直线,使函数的图像与函数的图像关于直线对称;(2)不等式:的解集为;(3)已知数列的前项和为,,则数列一定是等比数列;(4)过抛物线上的任意一点的切线方程一定可以表示为.则正确命题的序号为_________________.
查看答案和解析>>
科目: 来源: 题型:
【题目】某人某天的工作是:驾车从地出发,到两地办事,最后返回地,三地之间各路段行驶时间及当天降水概率如表:
路段 | 正常行驶所需时间(小时) | 上午降水概率 | 下午降水概率 |
2 | 0.3 | 0.6 | |
2 | 0.2 | 0.7 | |
3 | 0.3 | 0.9 |
若在某路段遇到降水,则在该路段行驶的时间需延长1小时,现有如下两个方案:
方案甲:上午从地出发到地办事,然后到达地,下午在地办事后返回地;
方案乙:上午从地出发到地办事,下午从地出发到达地, 办事后返回地.
(1)设此人8点从地出发,在各地办事及午餐的累积时间为2小时.且采用方案甲,求他当日18点或18点之前能返回地的概率;
(2)甲、乙两个方案中,哪个方案有利于办完事后能更早返回地?
查看答案和解析>>
科目: 来源: 题型:
【题目】某部门共有4名员工, 某次活动期间, 周六、 周日的上午、 下午各需要安排一名员工值班,若规定同一天的两个值班岗位不能安排给同一名员工, 则该活动值班岗位的不同安排方式共有( )
A.120种B.132种C.144种D.156种
查看答案和解析>>
科目: 来源: 题型:
【题目】某次考试后,对全班同学的数学成绩进行整理,得到表:
分数段 | ||||
人数 | 5 | 15 | 20 | 10 |
将以上数据绘制成频率分布直方图后,可估计出本次考试成绩的中位数是__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.
(1)求选出的4名选手中恰好有一名女教师的选派方法数;
(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列和都是等差数列,.数列满足.
(1)求的通项公式;
(2)证明:是等比数列;
(3)是否存在首项为1,公比为q的等比数列,使得对任意,都有成立?若存在,求出q的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com