科目: 来源: 题型:
【题目】等差数列首项和公差都是,记的前n项和为,等比数列各项均为正数,公比为q,记的前n项和为:
(1)写出构成的集合A;
(2)若将中的整数项按从小到大的顺序构成数列,求的一个通项公式;
(3)若q为正整数,问是否存在大于1的正整数k,使得同时为(1)中集合A的元素?若存在,写出所有符合条件的的通项公式,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C上的点到点的距离与它到直线的距离之比为,圆O的方程为,曲线C与x轴的正半轴的交点为A,过原点O且异于坐标轴的直线与曲线C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中,设直线AB,AC的斜率分别为;
(1)求曲线C的方程,并证明到点M的距离;
(2)求的值;
(3)记直线PQ,BC的斜率分别为、,是否存在常数,使得?若存在,求的值,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于定义在上的函数,若函数满足:①在区间上单调递减;②存在常数p,使其值域为,则称函数为的“渐近函数”;
(1)证明:函数是函数的渐近函数,并求此时实数p的值;
(2)若函数,证明:当时,不是的渐近函数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,记棱长为1的正方体,以各个面的中心为顶点的正八面体为,以各面的中心为顶点的正方体为,以各个面的中心为顶点的正八面体为,……,以此类推得一系列的多面体,设的棱长为,则数列的各项和为________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆,离心率为,直线恒过的一个焦点.
(1)求的标准方程;
(2)设为坐标原点,四边形的顶点均在上,交于,且,若直线的倾斜角的余弦值为,求直线与轴交点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】每年9月第三周是国家网络安全宣传周.某学校为调查本校学生对网络安全知识的了解情况,组织了《网络信息辨析测试》活动,并随机抽取50人的测试成绩绘制了频率分布直方图如图所示:
(1)某学生的测试成绩是75分,你觉得该同学的测试成绩低不低?说明理由;
(2)将成绩在内定义为“合格”;成绩在内定义为“不合格”.①请将下面的列联表补充完整; ②是否有90%的把认为网络安全知识的掌握情况与性别有关?说明你的理由;
合格 | 不合格 | 合计 | |
男生 | 26 | ||
女生 | 6 | ||
合计 |
(3)在(2)的前提下,对50人按是否合格,利用分层抽样的方法抽取5人,再从5人中随机抽取2人,求恰好2人都合格的概率.附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.
(1)求的普通方程和曲线C的直角坐标方程;
(2)求曲线C上的点到距离的最大值及该点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com