科目: 来源: 题型:
【题目】已知某产品的历史收益率的频率分布直方图如图所示.
(1)试估计该产品收益率的中位数;
(2)若该产品的售价(元)与销量(万份)之间有较强线性相关关系,从历史销售记录中抽样得到如表5组与的对应数据:
售价(元) | 25 | 30 | 38 | 45 | 52 |
销量(万份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
根据表中数据算出关于的线性回归方程为,求的值;
(3)若从表中五组销量数据中随机抽取两组,记其中销量超过6万份的组数为,求的分布列及期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)a(x﹣1)2+(x﹣2)ex(a>0).
(1)讨论函数f(x)的单调性;
(2)若关于x的方程f(x)a=0存在3个不相等的实数根,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某医学院欲研究昼夜温差大小与患感冒人数多少之间的关系,该院派出研究小组分别到气象局与某医院,抄录了1到6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到数据资料见表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
昼夜温差(℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数(个) | 23 | 26 | 30 | 27 | 17 | 13 |
该研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻的两个月的概率;
(2)已知选取的是1月与6月的两组数据.
(i)请根据2到5月份的数据,求就诊人数y关于昼夜温差x的线性回归方程:
(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该研究小组所得的线性回归方程是否理想?
(参考公式)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线C的参数方程为(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,过极点的两射线、相互垂直,与曲线C分别相交于A、B两点(不同于点O),且的倾斜角为锐角.
(1)求曲线C和射线的极坐标方程;
(2)求△OAB的面积的最小值,并求此时的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:的离心率为,右焦点F是抛物线:的焦点,点在抛物线上
求椭圆的方程;
已知斜率为k的直线l交椭圆于A,B两点,,直线AM与BM的斜率乘积为,若在椭圆上存在点N,使,求的面积的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”《中华人民共和国道路交通安全法》第条规定:对不礼让行人的驾驶员处以扣分,罚款元的处罚.下表是某市一主干路口监控设备所抓拍的个月内驾驶员不“礼让斑马线”行为统计数据:
月份 | |||||
不“礼让斑马线”驾驶员人数 |
(1)请利用所给数据求不“礼让斑马线”驾驶员人数与月份之间的回归直线方程,并预测该路口月份的不“礼让斑马线”驾驶员人数;
(2)若从表中月份和月份的不“礼让斑马线”驾驶员中,采用分层抽样方法抽取一个容量为的样本,再从这人中任选人进行交规调查,求抽到的两人恰好来自同一月份的概率.
参考公式:,.
参考数据:.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的上顶点为A,右焦点为F,O是坐标原点,是等腰直角三角形,且周长为.
(1)求椭圆的方程;
(2)若直线l与AF垂直,且交椭圆于B,C两点,求面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知直线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线的极坐标方程是.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)设点.若直与曲线相交于两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com