相关习题
 0  266037  266045  266051  266055  266061  266063  266067  266073  266075  266081  266087  266091  266093  266097  266103  266105  266111  266115  266117  266121  266123  266127  266129  266131  266132  266133  266135  266136  266137  266139  266141  266145  266147  266151  266153  266157  266163  266165  266171  266175  266177  266181  266187  266193  266195  266201  266205  266207  266213  266217  266223  266231  266669 

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程与曲线的直角坐标方程;

(2)若交于两点,点的极坐标为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有6位外国人,其中关注此次大阅兵的有5位,若从这6位外国人中任意选取2位做一次采访,则被采访者都关注了此次大阅兵的概率为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数的图象在处取得极值4.

1)求函数的单调区间;

2)对于函数,若存在两个不等正数,当时,函数的值域是,则把区间叫函数的“正保值区间”.问函数是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)求函数的单调区间和极值;

2)若,试讨论函数的零点个数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数在区间上的最大值为9,最小值为1,记

1)求实数的值;

2)若不等式成立,求实数的取值范围;

3)定义在上的函数,设,其中将区间任意划分成个小区间,如果存在一个常数,使得和式恒成立,则称函数为在上的有界变差函数,试判断函数是否为在上的有界变差函数?若是,求的最小值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂在2016年的减员增效中对部分人员实行分流,规定分流人员第一年可以到原单位领取工资的100%,从第二年起,以后每年只能在原单位按上一年的领取工资,该厂根据分流人员的技术特长,计划创办新的经济实体,该经济实体预计第一年属投资阶段,第二年每人可获得元收入,从第三年起每人每年的收入可在上一年的基础上递增50%,如果某人分流后工资的收入每年元,分流后进入新经济实体,第年的收入为元;

1)求的通项公式;

2)当时,是否一定可以保证这个人分流一年后的收入永远超过分流前的年收入?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)求函数的最小正周期;

(2)将函数的图象向右平移个单位长度,再向下平移)个单位长度后得到函数的图象,且函数的最大值为2.

(ⅰ)求函数的解析式; (ⅱ)证明:存在无穷多个互不相同的正整数,使得

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为.

(Ⅰ)若为等边三角形,求椭圆的方程;

(Ⅱ)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】为发挥体育咋核心素养时代的独特育人价值,越来越多的中学生已将某些体育项目纳入到学生的必修课程,某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究学习小组随机从该校高一年级学生抽取了100人进行调查.

一(1

一(2

一(3

一(4

一(5

一(6

一(7

一(8

一(9

一(10

市级比赛

获奖人数

2

2

3

3

4

4

3

3

4

2

市级以上比

赛获奖人数

2

2

1

0

2

3

3

2

1

2

1)已知在被抽取的女生中有6名高一(1)班学生,其中3名对游泳有兴趣,现在从这6名学生中最忌抽取3人,求至少有2人对游泳有兴趣的概率;

2)该研究性学习小组在调查发现,对游泳有兴趣的学生中有部分曾在市级以上游泳比赛中获奖,如上表所示,若从高一(8)班和高一(9)班获奖学生中随机各抽取2人进行跟踪调查.记选中的4人中市级以上游泳比赛获奖的人数为,求随机变量的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线l与曲线C交于不同的两点AB.

1)求曲线C的参数方程;

2)若点P为直线与x轴的交点,求的取值范围.

查看答案和解析>>

同步练习册答案