科目: 来源: 题型:
【题目】在直角坐标系中,已知抛物线上一点到焦点的距离为6,点为其准线上的任意一点,过点作抛物线的两条切线,切点分别为.
(1)求抛物线的方程;
(2)当点在轴上时,证明:为等腰直角三角形.
(3)证明:为直角三角形.
查看答案和解析>>
科目: 来源: 题型:
【题目】在四棱锥中,平面,是正三角形,,.
(1)求平面与平面所成的锐二面角的大小;
(2)点为线段上的一动点,设异面直线与直线所成角的大小为,当时,试确定点的位置.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列,若对任意的,,,存在正数使得,则称数列具有守恒性质,其中最小的称为数列的守恒数,记为.
(1)若数列是等差数列且公差为,前项和记为.
①证明:数列具有守恒性质,并求出其守恒数.
②数列是否具有守恒性质?并说明理由.
(2)若首项为1且公比不为1的正项等比数列具有守恒性质,且,求公比值的集合.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,,.
(1)若曲线在处的切线与曲线相切,求的值;
(2)当时,函数的图象恒在函数的图象的下方,求的取值范围;
(3)若函数恰有2个不相等的零点,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,某同学在素质教育基地通过自己设计、选料、制作,打磨出了一个作品,作品由三根木棒,,组成,三根木棒有相同的端点(粗细忽略不计),且四点在同一平面内,,,木棒可绕点O任意旋转,设BC的中点为D.
(1)当时,求OD的长;
(2)当木棒OC绕点O任意旋转时,求AD的长的范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,已知椭圆,若圆的一条切线与椭圆有两个交点,且.
(1)求圆的方程;
(2)已知椭圆的上顶点为,点在圆上,直线与椭圆相交于另一点,且,求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.
(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?
有兴趣 | 没兴趣 | 合计 | |
男 | 55 | ||
女 | |||
合计 |
(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024> | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一张坐标纸上一已作出圆及点,折叠此纸片,使与圆周上某点重合,每次折叠都会留下折痕,设折痕与直线的交点为,令点的轨迹为.
(1)求轨迹的方程;
(2)若直线与轨迹交于两个不同的点,且直线与以为直径的圆相切,若,求的面积的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥中,平面平面ABCD,底面ABCD是直角梯形,,,.
(1)在线段PA上找一点E,使得平面PCD,并证明;
(2)在(1)的条件下,若,求点E到平面PCD的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com