科目: 来源: 题型:
【题目】设函数.
(1)若函数在区间(为自然对数的底数)上有唯一的零点,求实数的取值范围;
(2)若在(为自然对数的底数)上存在一点,使得成立,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知椭圆的左、右顶点为,,上、下顶点为,,记四边形的内切圆为.
(1)求圆的标准方程;
(2)已知圆的一条不与坐标轴平行的切线交椭圆于P,M两点.
(i)求证:;
(ii)试探究是否为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.为曲线上的动点,点在射线上,且满足.
(Ⅰ)求点的轨迹的直角坐标方程;
(Ⅱ)设与轴交于点,过点且倾斜角为的直线与相交于两点,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着节能减排意识深入人心以及共享单车在饶城的大范围推广,越来越多的市民在出行时喜欢选择骑行共享单车。为了研究广大市民在共享单车上的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:
每周使用次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果认为每周使用超过3次的用户为“喜欢骑行共享单车”,请完成列表(见答题卡),并判断能否在犯错误概率不超过0.05的前提下,认为是否“喜欢骑行共享单车”与性别有关?
(2)每周骑行共享单车6次及6次以上的用户称为“骑行达人”,视频率为概率,在我市所有“骑行达人”中,随机抽取4名用户.
① 求抽取的4名用户中,既有男生“骑行达人”又有女“骑行达人”的概率;
②为了鼓励女性用户使用共享单车,对抽出的女“骑行达人”每人奖励500元,记奖励总金额为,求的分布列及数学期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】据统计,仅在北京地区每天就有500万单快递等待派送,近5万多名快递员奔跑在一线,快递网点人员流动性也较强,各快递公司需要经常招聘快递员,保证业务的正常开展.下面是50天内甲、乙两家快递公司的快递员的每天送货单数统计表:
送货单数 | 30 | 40 | 50 | 60 | |
天数 | 甲 | 10 | 10 | 20 | 10 |
乙 | 5 | 15 | 25 | 5 |
已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪元,每单抽成元;乙公司规定底薪元,每日前单无抽成,超过单的部分每单抽成元.
(1)分别求甲、乙快递公司的快递员的日工资(单位:元)与送货单数的函数关系式;
(2)若将频率视为概率,回答下列问题:
①记甲快递公司的快递员的日工资为(单位:元),求的分布列和数学期望;
②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线:=0(a>0),曲线的参数方程为(为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系;
(1)求曲线,的极坐标方程;
(2)已知极坐标方程为=的直线与曲线,分别相交于P,Q两点(均异于原点O),若|PQ|=﹣1,求实数a的值;
查看答案和解析>>
科目: 来源: 题型:
【题目】三国时期吴国的数学家赵爽曾创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个全等的直角三角形与中间的小正方形拼成一个大正方形,其中一个直角三角形中较小的锐角满足,现向大正方形内随机投掷一枚飞镖,则飞镖落在小正方形内的概率是( )
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com