科目: 来源: 题型:
【题目】已知平面向量满足,则以下说法正确的有( )个.
①;
②对于平面内任一向量,有且只有一对实数,使;
③若,且,则的范围为;
④设,且在处取得最小值,当时,则;
A.1B.2C.3D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:
每月完成合格产品的件数(单位:百件) | |||||
频数 | 10 | 45 | 35 | 6 | 4 |
男员工人数 | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格产品的件数不少于3200件的员工被评为“生产能手”.由以上统计数据填写下面列联表,并判断是否有95%的把握认为“生产能手”与性别有关?
非“生产能手” | “生产能手” | 合计 | |
男员工 | |||
女员工 | |||
合计 |
(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的,计件单价为1元;超出件的部分,累进计件单价为1.2元;超出件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段中各段的频率视为相应的概率,在该厂男员工中选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3100元的人数为,求的分布列和数学期望.
附:,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】2022年第24届冬奥会将在中国北京和张家口举行,为了宣传冬奥会,某大学从全校学生中随机抽取了120名学生,对是否收看第23届平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:
收看 | 没收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(1)根据上表数据,能否有的把握认为,收看开幕式与性别有关?
(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动,若从这8人中随机选取2人到较广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率.
附:,其中.
P() | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为,其中为参数,.在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.
(1)求直线的直角坐标方程与曲线的普通方程;
(2)若是曲线上的动点,为线段的中点.求点到直线的距离的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线C:的焦点为F,过F的直线交抛物线C于A,B两点.
(1)求线段AF的中点M的轨迹方程;
(2)已知△AOB的面积是△BOF面积的3倍,求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知是给定的平面,设不在内的任意两点M,N所在的直线为l,则下列命题正确的是( )
A.在内存在直线与直线l异面
B.在内存在直线与直线l相交
C.在内存在直线与直线l平行
D.存在过直线l的平面与平行
查看答案和解析>>
科目: 来源: 题型:
【题目】A4纸是生活中最常用的纸规格.A系列的纸张规格特色在于:①A0、A1、A2…、A5,所有尺寸的纸张长宽比都相同.②在A系列纸中,前一个序号的纸张以两条长边中点连线为折线对折裁剪分开后,可以得到两张后面序号大小的纸,比如1张A0纸对裁后可以得到2张A1纸,1张A1纸对裁可以得到2张A2纸,依此类推.这是因为A系列纸张的长宽比为:1这一特殊比例,所以具备这种特性.已知A0纸规格为84.1厘米×118.9厘米.118.9÷84.1≈1.41≈,那么A4纸的长度为( )
A.厘米B.厘米C.厘米D.厘米
查看答案和解析>>
科目: 来源: 题型:
【题目】求满足下列条件的直线方程.
(1)经过点A(-1,-3),且斜率等于直线3x+8y-1=0斜率的2倍;
(2)过点M(0,4),且与两坐标轴围成三角形的周长为12.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com