相关习题
 0  266066  266074  266080  266084  266090  266092  266096  266102  266104  266110  266116  266120  266122  266126  266132  266134  266140  266144  266146  266150  266152  266156  266158  266160  266161  266162  266164  266165  266166  266168  266170  266174  266176  266180  266182  266186  266192  266194  266200  266204  266206  266210  266216  266222  266224  266230  266234  266236  266242  266246  266252  266260  266669 

科目: 来源: 题型:

【题目】函数,其中,为实常数

(1)若时,讨论函数的单调性;

(2)若时,不等式上恒成立,求实数的取值范围;

(3)若,当时,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,采集相应数据,对该公司2017年连续六个月的利润进行了统计,并绘制了相应的折线图,如图所示:

1)折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司20181月份的利润;

2)甲公司新研制了一款产品,需要采购一批新型材料,现有采购成本分别为10万元包和12万元包的两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,不同类型的新型材料损坏的时间各不相同,已知生产新型材料的企业乙对两种型号各100件新型材料进行过科学模拟测试,得到两种新型材料使用寿命频数统计如表:

使用寿命

材料类型

1个月

2个月

3个月

4个月

总计

20

35

35

10

100

10

30

40

20

100

经甲公司测算,平均每包新型材料每月可以带来5万元收入,不考虑除采购成本之外的其他成本,假设每包新型材料的使用寿命都是整数月,且以频率作为每包新型材料使用寿命的概率,如果你是甲公司的负责人,以每包新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?

参考数据:

参考公式:回归直线方程为,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线,曲线,且的焦点之间的距离为在第一象限的交点为

(1)求曲线的方程和点的坐标

(2)若过点且斜率为的直线的另一个交点为,过点垂直的直线与的另一个交点为试求取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,四边形为梯形, ,且 是边长为2的正三角形,顶点上的射影为点,且 .

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】现有个小球,甲、乙两位同学轮流且不放回抓球,每次最少抓1个球,最多抓3个球,规定谁抓到最后一个球谁赢. 如果甲先抓,那么下列推断正确的是(

A. =4,则甲有必赢的策略 B. =6,则乙有必赢的策略

C. =9,则甲有必赢的策略 D. =11,则乙有必赢的策略

查看答案和解析>>

科目: 来源: 题型:

【题目】已知是曲线上任意一点,动点满足.

(1)求点的轨迹的方程;

(2)过点的直线交两点,过原点与点的直线交直线于点,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着新课程改革和高考综合改革的实施,高中教学以发展学生学科核心素养为导向,学习评价更关注学科核心素养的形成和发展.为此,我市于2018年举行第一届高中文科素养竞赛,竞赛结束后,为了评估我市高中学生的文科素养,从所有参赛学生中随机抽取1000名学生的成绩(单位:分)作为样本进行估计,将抽取的成绩整理后分成五组,从左到右依次记为,并绘制成如图所示的频率分布直方图.

(1)请补全频率分布直方图并估计这1000名学生成绩的平均数(同一组数据用该组区间的中点值作代表);

(2)采用分层抽样的方法从这1000名学生的成绩中抽取容量为40的样本,再从该样本成绩不低于80分的学生中随机抽取2名进行问卷调查,求至少有一名学生成绩不低于90分的概率;

(3)我市决定对本次竞赛成绩排在前180名的学生给予表彰,授予“文科素养优秀标兵”称号.一名学生本次竞赛成绩为79分,请你判断该学生能否被授予“文科素养优秀标兵”称号.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)写出的普通方程和的直角坐标方程;

(2)设点上,点上,求的最小值及此时的直角坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市为了改善居民的休闲娱乐活动场所,现有一块矩形草坪如下图所示,已知:米,米,拟在这块草坪内铺设三条小路,要求点的中点,点在边上,点在边时上,且.

1)设,试求的周长关于的函数解析式,并求出此函数的定义域;

2)经核算,三条路每米铺设费用均为元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在以为顶点,母线长为的圆锥中,底面圆的直径长为2是圆所在平面内一点,且是圆的切线,连接交圆于点,连接.

1)求证:平面平面

2)若的中点,连接,当二面角的大小为时,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案