科目: 来源: 题型:
【题目】如图,圆柱体木材的横截面半径为,从该木材中截取一段圆柱体,再加工制作成直四棱柱,该四棱柱的上、下底面均为等腰梯形,分别内接于圆柱的上、下底面,下底面圆的圆心在梯形内部,,,,设.
(1)求梯形的面积;
(2)当取何值时,直四棱柱的体积最大?并求出最大值(注:木材的长度足够长)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,其中.
(Ⅰ)当时,求函数在点处的切线方程;
(Ⅱ)设函数的导函数是,若不等式对于任意的实数恒成立,求实数的取值范围;
(Ⅲ)设函数,是函数的导函数,若函数存在两个极值点,,且,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆 的左焦点为F,上顶点为A,直线AF与直线 垂直,垂足为B,且点A是线段BF的中点.
(I)求椭圆C的方程;
(II)若M,N分别为椭圆C的左,右顶点,P是椭圆C上位于第一象限的一点,直线MP与直线 交于点Q,且,求点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数()的图象为曲线.
(Ⅰ)求曲线上任意一点处的切线的斜率的取值范围;
(Ⅱ)若曲线上存在两点处的切线互相垂直,求其中一条切线与曲线的切点的横坐标的取值范围;
(Ⅲ)试问:是否存在一条直线与曲线C同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设各项均为正数的数列的前项和为,已知,且对一切都成立.
(1)当时.
①求数列的通项公式;
②若,求数列的前项的和;
(2)是否存在实数,使数列是等差数列.如果存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校要在一条水泥路边安装路灯,其中灯杆的设计如图所示,AB为地面,CD,CE为路灯灯杆,CD⊥AB,∠DCE=,在E处安装路灯,且路灯的照明张角∠MEN=.已知CD=4m,CE=2m.
(1)当M,D重合时,求路灯在路面的照明宽度MN;
(2)求此路灯在路面上的照明宽度MN的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆C:(>>0)的右焦点为F(1,0),且过点(1,),过点F且不与轴重合的直线与椭圆C交于A,B两点,点P在椭圆上,且满足.
(1)求椭圆C的标准方程;
(2)若,求直线AB的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直四棱柱ABCD–A1B1C1D1中,已知底面ABCD是菱形,点P是侧棱C1C的中点.
(1)求证:AC1∥平面PBD;
(2)求证:BD⊥A1P.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com