科目: 来源: 题型:
【题目】如图,在四棱锥中,底面是梯形,,,是正三角形,为的中点,平面平面.
(1)求证:平面;
(2)在棱上是否存在点,使得二面角的余弦值为?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).
表中,.
(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为,
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:.
(1)求曲线的普通方程以及曲线的平面直角坐标方程;
(2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知的直角顶点在轴上,点为斜边的中点,且平行于轴.
(Ⅰ)求点的轨迹方程;
(Ⅱ)设点的轨迹为曲线,直线与的另一个交点为.以为直径的圆交轴于即此圆的圆心为,求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.
根据该走势图,下列结论正确的是( )
A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化
B. 这半年中,网民对该关键词相关的信息关注度不断减弱
C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差
D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目: 来源: 题型:
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:
间隔时间/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值都不超过,则称所求方程是“恰当回归方程”.
(1)从这组数据中随机选取组数据后,求剩下的组数据的间隔时间不相邻的概率;
(2)若选取的是后面组数据,求关于的线性回归方程,并判断此方程是否是“恰当回归方程”;
(3)为了使等候的乘客不超过人,试用(2)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟.
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:,.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知顶点是坐标原点的抛物线的焦点在轴正半轴上,圆心在直线上的圆与轴相切,且关于点对称.
(1)求和的标准方程;
(2)过点的直线与交于,与交于,求证:.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=exsinx,g(x)为f(x)的导函数,
(1)求f(x)的单调区间;
(2)当x∈[,π],证明:f(x)+g(x)(π﹣x)≥0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com