科目: 来源: 题型:
【题目】平面直角坐标系xOy中,已知抛物线y2=2px(p>0)及点M(2,0),动直线l过点M交抛物线于A,B两点,当l垂直于x轴时,AB=4.
(1)求p的值;
(2)若l与x轴不垂直,设线段AB中点为C,直线l1经过点C且垂直于y轴,直线l2经过点M且垂直于直线l,记l1,l2相交于点P,求证:点P在定直线上.
查看答案和解析>>
科目: 来源: 题型:
【题目】设各项均为正数的数列{an}的前n项和为Sn,已知a1=1,且anSn+1﹣an+1Sn=an+1﹣λan,对一切n∈N*都成立.
(1)当λ=1时;
①求数列{an}的通项公式;
②若bn=(n+1)an,求数列{bn}的前n项的和Tn;
(2)是否存在实数λ,使数列{an}是等差数列如果存在,求出λ的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知椭圆C:1(a>b>0)的离心率为,右准线方程为x=4,A,B分别是椭圆C的左,右顶点,过右焦点F且斜率为k(k>0)的直线l与椭圆C相交于M,N两点(其中,M在x轴上方).
(1)求椭圆C的标准方程;
(2)设线段MN的中点为D,若直线OD的斜率为,求k的值;
(3)记△AFM,△BFN的面积分别为S1,S2,若,求M的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,圆O是一半径为10米的圆形草坪,为了满足周边市民跳广场舞的需要,现规划在草坪上建一个广场,广场形状如图中虚线部分所示的曲边四边形,其中A,B两点在⊙O上,A,B,C,D恰是一个正方形的四个顶点.根据规划要求,在A,B,C,D四点处安装四盏照明设备,从圆心O点出发,在地下铺设4条到A,B,C,D四点线路OA,OB,OC,OD.
(1)若正方形边长为10米,求广场的面积;
(2)求铺设的4条线路OA,OB,OC,OD总长度的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直四棱柱ABCD-A1B1C1D1中,AD//平面BCC1B1,AD⊥DB.求证:
(1)BC//平面ADD1A1;
(2)平面BCC1B1⊥平面BDD1B1.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,a∈R.
(1)若函数f(x)在x=1处的切线为y=2x+b,求a,b的值;
(2)记g(x)=f(x)+ax,若函数g(x)在区间(0,)上有最小值,求实数a的取值范围;
(3)当a=0时,关于x的方程f(x)=bx2有两个不相等的实数根,求实数b的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为(为参数).以坐标原点O为极,z轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(Ⅰ)求曲线C的普通方程和直线的直角坐标方程;
(Ⅱ)设点.若直线与曲线C相交于A,B两点,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知如图1直角梯形,,,,,E为的中点,沿将梯形折起(如图2),使平面平面.
(1)证明:平面;
(2)在线段上是否存在点F,使得平面与平面所成的锐二面角的余弦值为,若存在,求出点F的位置;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调査.经统计这100位居民的网购消费金额均在区间内,按,,,,,分成6组,其频率分布直方图如图所示.
(1)估计该社区居民最近一年来网购消费金额的中位数;
(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的列联表,并判断有多大把握认为“网购迷与性别有关系”;
男 | 女 | 合计 | |
网购迷 | 20 | ||
非网购迷 | 45 | ||
合计 | 100 |
(3)调査显示,甲、乙两人每次网购采用的支付方式相互独立,两人网购时间与次数也互不. 影响.统计最近一年来两人网购的总次数与支付方式,所得数据如下表所示:
网购总次数 | 支付宝支付次数 | 银行卡支付次数 | 微信支付次数 | |
80 | 40 | 16 | 24 | |
乙 | 90 | 60 | 18 | 12 |
将频率视为概率,若甲、乙两人在下周内各自网购2次,记两人采用支付宝支付的次数之和为,求的数学期望.
附:观测值公式:
临界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com