科目: 来源: 题型:
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80分及以上的花苗为优质花苗.
(1)用样本估计总体,以频率作为概率,若在两块实验地随机抽取3株花苗,求所抽取的花苗中优质花苗数的分布列和数学期望;
(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合计 |
附:下面的临界值表仅供参考.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(参考公式:,其中)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定点,,直线、相交于点,且它们的斜率之积为,记动点的轨迹为曲线。
(1)求曲线的方程;
(2)过点的直线与曲线交于、两点,是否存在定点,使得直线与斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个x,y都小于1的正实数对,再统计其中x,y能与1构成钝角三角形三边的数对的个数m,最后根据统计个数m估计的值.如果统计结果是,那么可以估计的值为( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,其中为常数,且.
(1)若是奇函数,求的取值集合;
(2)当时,设的反函数,且的图象与的图象关于对称,求的取值集合;
(3)对于问题(1)(2)中的、,当时,不等式恒成立,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图放置的边长为1的正方形 沿 轴滚动(向右为顺时针,向左为逆时针).设顶点 的轨迹方程是,则关于的最小正周期及在其两个相邻零点间的图像与x轴所围区域的面积S的正确结论是( )
A. B.
C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于函数、、,如果存在实数使得,那么称为、的生成函数.
(1) 下面给出两组函数, 是否分别为、的生成函数?并说明理由;
第一组: , ,
第二组: , , ;
(2) 设, , ,生成函数.若不等式在上有解,求实数的取值范围;
(3) 设, ,取,生成函数图像的最低点坐标为.若对于任意正实数,且,试问是否存在最大的常数,使恒成立?如果存在,求出这个的值;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com