科目: 来源: 题型:
【题目】如图,圆柱的轴截面ABCD是边长为2的正方形,点P是圆弧CD上的一动点(不与C,D重合),点Q是圆弧AB的中点,且点P,Q在平面ABCD的两侧.
(1)证明:平面PAD⊥平面PBC;
(2)设点P在平面ABQ上的射影为点O,点E,F分别是△PQB和△POA的重心,当三棱锥P﹣ABC体积最大时,回答下列问题.
(i)证明:EF∥平面PAQ;
(ii)求平面PAB与平面PCD所成二面角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别是a,b,c,且csin2B﹣bsin(A+B)=0
(1)求角B的大小;
(2)设a=4,c=6,求sinC的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂生产的产品中分正品与次品,正品重,次品重,现有5袋产品(每袋装有10个产品),已知其中有且只有一袋次品(10个产品均为次品)如果将5袋产品以1~5编号,第袋取出个产品(),并将取出的产品一起用秤(可以称出物体重量的工具)称出其重量,若次品所在的袋子的编号是2,此时的重量_________;若次品所在的袋子的编号是,此时的重量_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】冠状病毒是一个大型病毒家族,己知可引起感冒以及中东呼吸综合征()和严重急性呼吸综合征()等较严重疾病.而今年出现在湖北武汉的新型冠状病毒()是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.
某医院为筛查冠状病毒,需要检验血液是否为阳性,现有n()份血液样本,有以下两种检验方式:
方式一:逐份检验,则需要检验n次.
方式二:混合检验,将其中k(且)份血液样本分别取样混合在一起检验.
若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为.
假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p().现取其中k(且)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.
(1)若,试求p关于k的函数关系式;
(2)若p与干扰素计量相关,其中()是不同的正实数,
满足且()都有成立.
(i)求证:数列等比数列;
(ii)当时,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,是椭圆上一动点(与左、右顶点不重合)已知的内切圆半径的最大值为,椭圆的离心率为.
(1)求椭圆C的方程;
(2)过的直线交椭圆于两点,过作轴的垂线交椭圆与另一点(不与重合).设的外心为,求证为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设s,t是不相等的两个正数,且s+slnt=t+tlns,则s+t﹣st的取值范围为( )
A.(﹣∞,1)B.(﹣∞,0)C.(0,+∞)D.(1,+∞)
查看答案和解析>>
科目: 来源: 题型:
【题目】由我国引领的5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G经济产出所做的预测.结合下图,下列说法正确的是( )
A.5G的发展带动今后几年的总经济产出逐年增加
B.设备制造商的经济产出前期增长较快,后期放缓
C.设备制造商在各年的总经济产出中一直处于领先地位
D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com