科目: 来源: 题型:
【题目】某大学就业部从该校2018年毕业的且已就业的大学本科生中随机抽取100人进行问卷调查,其中有一项是他们的月薪情况.经调查发现,他们的月薪在3000元到10000元之间,根据统计数据得到如下频率分布直方图:
若月薪在区间的左侧,则认为该大学本科生属“就业不理想”的学生,学校将联系本人,咨询月薪过低的原因,从而为本科生就业提供更好的指导意见.其中,分别为样本平均数和样本标准差计,计算可得元(同一组中的数据用该区间的中点值代表).
(1)现该校2018届大学本科生毕业生张铭的月薪为3600元,试判断张铭是否属于“就业不理想”的学生?
(2)为感谢同学们对这项调查工作的支持,该校利用分层抽样的方法从样本的前3组中抽取6人,各赠送一份礼品,并从这6人中再抽取2人,各赠送某款智能手机1部,求获赠智能手机的2人中恰有1人月薪不超过5000 元的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.
(1)证明数列是“平方递推数列”,且数列为等比数列;
(2)设(1)中“平方递推数列”的前项积为,即,求;
(3)在(2)的条件下,记,求数列的前项和,并求使的的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率为,分别为的上、下顶点且为外的动点,且到上点的最近距离为1.
(1)求椭圆的标准方程;
(2)当时,设直线分别与椭圆交于两点,若的面积是的面积的倍,求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥中,,,,为正三角形.若,且与底面所成角的正切值为.
(1)证明:平面平面;
(2)是线段上一点,记,是否存在实数,使二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】给出下列五个命题:
①函数在区间上存在零点;
②要得到函数的图象,只需将函数的图象向左平移个单位;
③若,则函数的值城为;
④“”是“函数在定义域上是奇函数”的充分不必要条件;
⑤已知为等差数列,若,且它的前项和有最大值,那么当取得最小正值时,.
其中正确命题的序号是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于给定的正整数k,若正项数列满足,对任意的正整数n()总成立,则称数列是“数列”.
(1)证明:若是正项等比数列,则是“数列”;
(2)已知正项数列既是“数列”,又是“数列”,
①证明:是等比数列;
②若,,且存在,使得为数列中的项,求q的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数(a,).
(1)若,且在内有且只有一个零点,求a的值;
(2)若,且有三个不同零点,问是否存在实数a使得这三个零点成等差数列?若存在,求出a的值,若不存在,请说明理由;
(3)若,,试讨论是否存在,使得.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知边长为2的正三角形ABE所在的平面与菱形ABCD所在的平面垂直,且,点F是BC上一点,且.
(1)当时,证明:;
(2)是否存在一个常数k,使得三棱锥的体积等于四棱锥的体积的,若存在,求出k的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com