科目: 来源: 题型:
【题目】已知函数(是自然对数的底数)
(1)若直线为曲线的一条切线,求实数的值;
(2)若函数在区间上为单调函数,求实数的取值范围;
(3)设,若在定义域上有极值点(极值点是指函数取得极值时对应的自变量的值),求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了研究一种昆虫的产卵数和温度是否有关,现收集了7组观测数据列于下表中,并作出了如图的散点图.
温度/℃ | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
产卵数/个 | 6 | 10 | 22 | 26 | 64 | 118 | 310 |
26 | 79.4 | 3.58 | 112 | 11.6 | 2340 | 35.72 |
其中.
(1)根据散点图判断,与哪一个更适宜作为该昆虫的产卵数与温度的回归方程类型?(给出判断即可,不必说明理由).
(2)根据表中数据,建立关于的回归方程;(保留两位有效数字)
(3)根据关于的回归方程,估计温度为33℃时的产卵数.
(参考数据:)
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程是(为参数),曲线的直角坐标方程为,将曲线上的点向下平移1个单位,然后横坐标伸长为原来的2倍,纵坐标不变,得到曲线.
(1)求曲线和曲线的直角坐标方程;
(2)若曲线和曲线相交于两点,求三角形的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程是(为参数),曲线的直角坐标方程为,将曲线上的点向下平移1个单位,然后横坐标伸长为原来的2倍,纵坐标不变,得到曲线.
(1)求曲线和曲线的直角坐标方程;
(2)若曲线和曲线相交于两点,求三角形的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的短轴两端点与左焦点围成的三角形面积为3,短轴两端点与长轴一端点围成的三角形面积为2,设椭圆的左、右顶点分别为是椭圆上除两点外一动点.
(1)求椭圆的方程;
(2)过椭圆的左焦点作平行于直线(是坐标原点)的直线,与曲线交于两点,点关于原点的对称点为,求证:成等比数列.
查看答案和解析>>
科目: 来源: 题型:
【题目】自2016年1月1日全面实施二孩政策以来,为了了解生二孩意愿与年龄段是否有关,某市选取“75后”和“80后”两个年龄段的已婚妇女作为调查对象,进行了问卷调查,共调查了40名“80后”,40名“75后”,其中调查的“80后”有10名不愿意生二孩,其余的全部愿意生二孩;调查的“75后”有5人不愿意生二孩,其余的全部愿意生二孩.
(1)根据以上数据完成下列列联表;
年龄段 | 不愿意 | 愿意 | 合计 |
“80后” | |||
“75后” | |||
合计 |
(2)根据列联表,能否在犯错误的概率不超过0.05的前提下,认为“生二孩意愿与年龄段有关”?请说明理由.
参考公式:(其中)
附表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在直角梯形中,,,,,,为上一点,且,过作交于,现将沿折到,使,如图2.
(1)求证:平面
(2)在线段上是否存在一点,使与平面所成的角为?若存在,确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年,海南等8省公布了高考改革综合方案将采取“”模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2门为了更好进行生涯规划,甲同学对高一一年来的七次考试成绩进行统计分析,其中物理、历史成绩的茎叶图如图所示.
(1)若甲同学随机选择3门功课,求他选到物理、地理两门功课的概率;
(2)试根据茎叶图分析甲同学的物理和历史哪一学科成绩更稳定.(不需计算)
(3)甲同学发现,其物理考试成绩(分)与班级平均分(分)具有线性相关关系,统计数据如下表所示,试求当班级平均分为50分时,其物理考试成绩.(计算,时精确到0.01)
(分) | 57 | 61 | 65 | 72 | 74 | 77 | 84 |
(分) | 76 | 82 | 82 | 85 | 87 | 90 | 93 |
参考数据:,,,,,.
参考公式:,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com