科目: 来源: 题型:
【题目】如图,在正方体中,点为棱上一动点(不包括顶点),平面交于点,则下列结论中错误的是( )
A.存在点,使得四边形为菱形
B.存在点,使得四边形的面积最小
C.存在点,使得平面
D.存在点,使得平面平面(其中为的中点)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正项数列满足:,,其中.
(1)若,求数列的前项的和;
(2)若,.
①求数列的通项公式;
②记数列的前项的和为,若无穷项等比数列始终满足,求数列的通项公式.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,某市建有贯穿东西和南北的两条垂直公路,,在它们交叉路口点处的东北方向建有一个荷花池,荷花池的外围是一条环形公路,荷花池中的固定观景台位于两条垂直公路的角平分线上,与环形公路的交点记作.游客游览荷花池时,需沿公路先到达环形公路处.为了分流游客,方便游客游览荷花池,计划从靠近公路,的环形公路上选,两处(,关于直线对称)修建直达观景台的玻璃栈道,.以,所在的直线为,轴建立平面直角坐标系,靠近公路,的环形公路可用曲线近似表示,曲线符合函数.
(1)若百米,点到的垂直距离为1百米,求玻璃栈道的总长度;
(2)若要使得玻璃栈道的总长度最小为百米,求观景台的位置.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商店销售某海鲜,统计了春节前后50天该海鲜的需求量(,单位:公斤),其频率分布直方图如图所示,该海鲜每天进货1次,商店每销售1公斤可获利50元;若供大于求,剩余的削价处理,每处理1公斤亏损10元;若供不应求,可从其它商店调拨,销售1公斤可获利30元.假设商店每天该海鲜的进货量为14公斤,商店的日利润为元.
(1)求商店日利润关于需求量的函数表达式;
(2)假设同组中的每个数据用该组区间的中点值代替.
①求这50天商店销售该海鲜日利润的平均数;
②估计日利润在区间内的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某盒子中有4个小球,分别写有“中”、“美”、“建”、“交”四个字,从中任取一个小球,有放回抽取,直到“建”、“交”二字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率;利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3,代表“中”、“美”、“建”、“交”着四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了一下18组随机数:
323 213 320 032 132 031 123 330 110
321 120 122 321 221 230 132 322 130
由此可以估计,恰好第三次停止的概率为( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】2018年9~12月某市邮政快递业务量完成件数较2017年9~12月同比增长25%,该市2017年9~12月邮政快递业务量柱形图及2018年9~12月邮政快递业务量结构扇形图如图所示,根据统计图,给出下列结论:
①2018年9~12月,该市邮政快递业务量完成件数约1500万件;
②2018年9~12月,该市邮政快递同城业务量完成件数与2017年9~12月相比有所减少;
③2018年9~12月,该市邮政快递国际及港澳台业务量同比增长超过75%,其中正确结论的个数为( )
A. 3
B. 2
C. 1
D. 0
查看答案和解析>>
科目: 来源: 题型:
【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度()的7组观测数据,其散点图如所示:
根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:
27 | 74 | 182 |
表中,.
(1)求和温度的回归方程(回归系数结果精确到);
(2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括与),估计该品种一只昆虫的产卵数的范围.(参考数据:,,,,.)
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com