相关习题
 0  266306  266314  266320  266324  266330  266332  266336  266342  266344  266350  266356  266360  266362  266366  266372  266374  266380  266384  266386  266390  266392  266396  266398  266400  266401  266402  266404  266405  266406  266408  266410  266414  266416  266420  266422  266426  266432  266434  266440  266444  266446  266450  266456  266462  266464  266470  266474  266476  266482  266486  266492  266500  266669 

科目: 来源: 题型:

【题目】为了引导居民合理用水,某市决定全面实施阶梯水价.阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:

阶梯级别

第一阶梯水量

第二阶梯水量

第三阶梯水量

月用水量范围(单位:立方米)

从本市随机抽取了10户家庭,统计了同一月份的月用水量,得到如图茎叶图:

(Ⅰ)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数X的分布列与数学期望;

(Ⅱ)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到户月用水量为一阶的可能性最大,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.

(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;

(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.

查看答案和解析>>

科目: 来源: 题型:

【题目】气象意义上,从春季进入夏季的标志为:“连续5天的日平均温度不低于22℃”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据的中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区的有( )

A. ①②③ B. ①③ C. ②③ D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆的圆心为,直线l过点且与x轴不重合,l交圆CD两点,过的平行线,交于点E.设点E的轨迹为.

1)求的方程;

2)直线相切于点M与两坐标轴的交点为AB,直线经过点M且与垂直,的另一个交点为N,当取得最小值时,求的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图.四棱柱的底面是直角梯形,,四边形均为正方形.

1)证明;平面平面ABCD

2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.

1)根据条形统计图,估计本届高三学生本科上线率.

2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.

i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);

ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.

可能用到的参考数据:取.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地有两个国家AAAA级景区—甲景区和乙景区.相关部门统计了这两个景区20191月至6月的客流量(单位:百人),得到如图所示的茎叶图.关于20191月至6月这两个景区的客流量,下列结论正确的是( )

A.甲景区客流量的中位数为13000

B.乙景区客流量的中位数为13000

C.甲景区客流量的平均值比乙景区客流量的平均值小

D.甲景区客流量的极差比乙景区客流量的极差大

查看答案和解析>>

科目: 来源: 题型:

【题目】在一次电视节目的答题游戏中,题型为选择题,只有AB两种结果,其中某选手选择正确的概率为p,选择错误的概率为q,若选择正确则加1分,选择错误则减1分,现记该选手答完n道题后总得分为”.

1)当时,记,求的分布列及数学期望;

2)当时,求的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正四棱锥中,,点分别在线段上,

(1)若,求证:

(2)若二面角的大小为,求线段的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.若在定义域内存在,使得成立,则称为函数的局部对称点.

1)若aa≠0,证明:函数有局部对称点;

2)若函数在定义域内有局部对称点,求实数c的取值范围;

3)若函数R上有局部对称点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案