相关习题
 0  266318  266326  266332  266336  266342  266344  266348  266354  266356  266362  266368  266372  266374  266378  266384  266386  266392  266396  266398  266402  266404  266408  266410  266412  266413  266414  266416  266417  266418  266420  266422  266426  266428  266432  266434  266438  266444  266446  266452  266456  266458  266462  266468  266474  266476  266482  266486  266488  266494  266498  266504  266512  266669 

科目: 来源: 题型:

【题目】已知直线的参数方程是是参数),以坐标原点为原点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)判断直线与曲线的位置关系;

(2)过直线上的点作曲线的切线,求切线长的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校为研究学生语言学科的学习情况,现对高二200名学生英语和语文某次考试成绩进行抽样分析.200名学生编号为001002200,采用系统抽样的方法等距抽取10名学生,将10名学生的两科成绩(单位:分)绘成折线图如下:

1)若第二段抽取的学生编号是026,写出第六段抽取的学生编号;

2)在这两科成绩差低于20分的学生中随机抽取2人进行访谈,求2人成绩均是语文成绩高于英语成绩的概率;

3)根据折线图,比较该校高二年级学生的语文和英语两科成绩,写出至少两条统计结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在几何体中,底面为矩形,.为棱上一点,平面与棱交于点.

1)求证:

2)若,试问平面是否可能与平面垂直?若能,求出的值;若不能,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】设圆的圆心为,直线过点且与轴不重合, 交圆两点,过的平行线交于点.

(1)证明为定值,并写出点的轨迹方程;

(2)设,过点作直线,交点的轨迹于两点 (异于),直线的斜率分别为,证明: 为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在测试中,客观题难度的计算公式为,其中为第题的难度,为答对该题的人数,为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:

题号

1

2

3

4

5

考前预估难度

0.9

0.8

0.7

0.6

0.4

测试后,随机抽取了20名学生的答题数据进行统计,结果如下:

题号

1

2

3

4

5

实测答对人数

16

16

14

14

8

1)根据题中数据,估计这240名学生中第5题的实测答对人数;

2)从抽取的20名学生中再随机抽取2名学生,记这2名学生中第5题答对的人数为,求的分布列和数学期望;

3)定义统计量,其中为第题的实测难度,为第题的预估难度(.规定:若,则称该次测试的难度预估合理,否则为不合理.试据此判断本次测试的难度预估是否合理.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)求函数的图象在点处的切线方程;

(2)求函数的单调区间;

(3)若,且方程有两个不相等的实数根,求证: .

查看答案和解析>>

科目: 来源: 题型:

【题目】设圆的圆心为,直线过点且与轴不重合, 交圆两点,过的平行线交于点.

(1)证明为定值,并写出点的轨迹方程;

(2)设,过点作直线,交点的轨迹于两点 (异于),直线的斜率分别为,证明: 为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】高考数学考试中有12道选择题,每道选择题有4个选项,其中有且仅有一个是正确的.评分标准规定:在每小题给出的四个选项中,只有一项是符合题目要求的,答对得5分,不答或答错得0分.某考生每道选择题都选出一个答案,能确定其中有8道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的,有一道题能判断出一个选项是错误的,还有一道题因不理解题意只能乱猜.试求该考生的选择题:

1)得60分的概率;

2)得多少分的概率最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为自然对数的底数,).

(1)判断曲线在点处的切线与曲线的公共点个数;

(2)当时,若函数有两个零点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在多面体中,四边形是菱形,平面的中点.

(1)求证:平面平面

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

同步练习册答案