相关习题
 0  266323  266331  266337  266341  266347  266349  266353  266359  266361  266367  266373  266377  266379  266383  266389  266391  266397  266401  266403  266407  266409  266413  266415  266417  266418  266419  266421  266422  266423  266425  266427  266431  266433  266437  266439  266443  266449  266451  266457  266461  266463  266467  266473  266479  266481  266487  266491  266493  266499  266503  266509  266517  266669 

科目: 来源: 题型:

【题目】英国统计学家EH.辛普森1951年提出了著名的辛普森悖论,下面这个案例可以让我们感受到这个悖论.有甲乙两名法官,他们都在民事庭和行政庭主持审理案件,他们审理的部分案件被提出上诉.记录这些被上述案件的终审结果如下表所示(单位:件):

法官甲

法官乙

终审结果

民事庭

行政庭

合计

终审结果

民事庭

行政庭

合计

维持

29

100

129

维持

90

20

110

推翻

3

18

21

推翻

10

5

15

合计

32

118

150

合计

100

25

125

记甲法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,记乙法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,则下面说法正确的是

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,直线,圆,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.

(1)求的极坐标方程;

(2)若直线的极坐标方程为,设的交点为AB,求的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=-ln(x+m).

(1)x=0f(x)的极值点,求m,并讨论f(x)的单调性;

2)当m≤2时,证明f(x)>0.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,右焦点到直线的距离为.

1)求椭圆的方程;

2)过点作直线交椭圆于两点,交轴于点,满足,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市A,B两所中学的学生组队参加辩论赛,A中学推荐3名男生,2名女生,B中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队

1求A中学至少有1名学生入选代表队的概率.

2某场比赛前从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X得分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在(单位:克)中,其频率分布直方图如图所示.

1)按分层抽样的方法从质量落在的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;

2)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:

A. 所有蜜柚均以40/千克收购;

B. 低于2250克的蜜柚以60/个收购,高于或等于2250克的以80/个收购.

请你通过计算为该村选择收益最好的方案.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形中,的中点,现将折起,使得平面平面,平面平面.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为(其中为常数).

1)若曲线N与曲线M只有一个公共点,求的取值范围;

2)当时,求曲线M上的点与曲线N上的点之间的最小距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的导函数.

(1)求函数的单调区间;

(2)若函数上存在最大值0,求函数上的最大值;

(3)求证:当时,.

查看答案和解析>>

科目: 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出的值分别为( )

(参考数据:

A. B.

C. D.

查看答案和解析>>

同步练习册答案