科目: 来源: 题型:
【题目】是衡量空气污染程度的一个指标,为了了解市空气质量情况,从年每天的值的数据中随机抽取天的数据,其频率分布直方图如图所示.将值划分成区间、、、,分别称为一级、二级、三级和四级,统计时用频率估计概率 .
(1)根据年的数据估计该市在年中空气质量为一级的天数;
(2)如果市对环境进行治理,经治理后,每天值近似满足正态分布,求经过治理后的值的均值下降率.
查看答案和解析>>
科目: 来源: 题型:
【题目】一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
(1)在给定的坐标系中画出表中数据的散点图,并由散点图判断销售件数与进店人数是否线性相关?(给出判断即可,不必说明理由)
(2)建立关于的回归方程(系数精确到0.01),预测进店人数为80时,商品销售的件数(结果保留整数).
参考数据:,,,,,.
参考公式:回归方程,其中,.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在之间,其得分的频率分布直方图如图,则下列结论错误的是( )
A.得分在之间的共有40人
B.从这100名参赛者中随机选取1人,其得分在的概率为0.5
C.估计得分的众数为55
D.这100名参赛者得分的中位数为65
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,设是由 个实数组成的行列的数表,其中 表示位于第行第列的实数,且.
定义 为第s行与第t行的积. 若对于任意(),都有,则称数表为完美数表.
(Ⅰ)当时,试写出一个符合条件的完美数表;
(Ⅱ)证明:不存在10行10列的完美数表;
(Ⅲ)设为行列的完美数表,且对于任意的和,都有,证明:.
查看答案和解析>>
科目: 来源: 题型:
【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.
(1)当a=90时,求纸盒侧面积的最大值;
(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1) 证明:PB∥平面AEC
(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4—4:坐标系与参数方程。
已知曲线C:(t为参数), C:(为参数)。
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线
(t为参数)距离的最小值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com