相关习题
 0  266338  266346  266352  266356  266362  266364  266368  266374  266376  266382  266388  266392  266394  266398  266404  266406  266412  266416  266418  266422  266424  266428  266430  266432  266433  266434  266436  266437  266438  266440  266442  266446  266448  266452  266454  266458  266464  266466  266472  266476  266478  266482  266488  266494  266496  266502  266506  266508  266514  266518  266524  266532  266669 

科目: 来源: 题型:

【题目】已知函数.

(1)若,求的单调区间;

(2)若函数存在唯一的零点,且,则的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目: 来源: 题型:

【题目】自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:

20以下

[2030

[3040

[4050

[5060

[6070]

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

1)现随机抽取1名顾客,试估计该顾客年龄在[3050)且未使用自由购的概率;

2)从被抽取的年龄在[5070]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[5060)的概率;

3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)设点,直线与曲线交于不同的两点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,;

若函数上存在零点,求a的取值范围;

设函数,,当时,若对任意的,总存在,使得,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

讨论函数的单调性;

时,求函数在区间上的零点个数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的极小值;

(Ⅱ)若函数有且只有一个零点,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图空间几何体中,均为边长为的等边三角形,平面平面,平面平面

(Ⅰ)求线段的长度.

(Ⅱ)试在平面内作一条直线,使得直线上任意一点的连线均与平面平行,并给出详细证明;

查看答案和解析>>

科目: 来源: 题型:

【题目】第十三届全国人民代表大会第二次会议和政协第十三届全国委员会第二次会议(简称两会)将分别于日和日在北京开幕.全国两会召开前夕,某网站推出两会热点大型调查,调查数据表明,网约车安全问题是百姓最为关心的热点之一,参与调查者中关注此问题的约占.现从参与者中随机选出人,并将这人按年龄分组:第,第,第,第,第,得到的频率分布直方图如图所示:

(Ⅰ)现在要从年龄较小的第组中用分层抽样的方法抽取人,再从这人中随机抽取人赠送礼品,求抽取的人中至少有人年龄在第组的概率;

(Ⅱ)把年龄在第组的人称为青少年组,年龄在第组的人称为中老年组,若选出的人中不关注网约车安全问题的人中老年人有人,问是否有的把握认为是否关注网约车安全问题与年龄有关?附:

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂加工一批零件,加工过程中会产生次品,根据经验可知,其次品率p与日产量x(万件)之间满足函数关系式,已知每生产1万件合格品可获利2万元,但生产1万件次品将亏损1万元(次品率=次品数/生产量)

1)试写出加工这批零件的日盈利额y(万元)与日产量x(万件)的函数;

2)当日产量为多少时,可获得最大利润?最大利润为多少?

查看答案和解析>>

同步练习册答案