相关习题
 0  266340  266348  266354  266358  266364  266366  266370  266376  266378  266384  266390  266394  266396  266400  266406  266408  266414  266418  266420  266424  266426  266430  266432  266434  266435  266436  266438  266439  266440  266442  266444  266448  266450  266454  266456  266460  266466  266468  266474  266478  266480  266484  266490  266496  266498  266504  266508  266510  266516  266520  266526  266534  266669 

科目: 来源: 题型:

【题目】在直角坐标系中,以为极点,轴为正半轴为极轴建立极坐标系.已知曲线的极坐标方程为 ,直线与曲线相交于两点,直线过定点且倾斜角为交曲线两点.

(1)把曲线化成直角坐标方程,并求的值;

(2)若成等比数列,求直线的倾斜角.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(I)若函数处取得极值,求实数的值;并求此时上的最大值;

()若函数不存在零点,求实数a的取值范围;

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,且直线是函数的一条切线.

(1)求的值;

(2)对任意的,都存在,使得,求的取值范围;

(3)已知方程有两个根,若,求证: .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,下列结论中不正确的是( )

A.的图象关于点中心对称

B.的图象关于直线对称

C.的最大值为

D.既是奇函数,又是周期函数

查看答案和解析>>

科目: 来源: 题型:

【题目】下列五个命题中真命题的个数是(

1)若是奇函数,则的图像关于轴对称;

2)若,则

3)若函数对任意满足,则8是函数的一个周期;

4)命题“存在”的否定是“任意”;

5)已知函数,若,则.

A.2B.3C.4D.5

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的导函数是偶函数,若方程在区间(其中为自然对数的底)上有两个不相等的实数根,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线C(α为参数)和定点A(0,)F1F2是此曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.

(1)求直线AF2的极坐标方程;

(2)经过点F1且与直线AF2垂直的直线l交曲线CMN两点,求||MF1||NF1||的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一年度未发生有责任道路交通事故

下浮10%

上两年度未发生有责任道路交通事故

下浮

上三年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故

上浮10%

上一个年度发生有责任交通死亡事故

上浮30%

某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

A1

A2

A3

A4

A5

A6

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)若存在,且,使得,求证: .

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥中,底面为梯形, 底面 . 

1)求证:平面 平面

2)设上的一点,满足,若直线与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案