相关习题
 0  266356  266364  266370  266374  266380  266382  266386  266392  266394  266400  266406  266410  266412  266416  266422  266424  266430  266434  266436  266440  266442  266446  266448  266450  266451  266452  266454  266455  266456  266458  266460  266464  266466  266470  266472  266476  266482  266484  266490  266494  266496  266500  266506  266512  266514  266520  266524  266526  266532  266536  266542  266550  266669 

科目: 来源: 题型:

【题目】如图(1),在等腰直角中,斜边D的中点,将沿折叠得到如图(2)所示的三棱锥,若三棱锥的外接球的半径为,则_________.

图(1 图(2

查看答案和解析>>

科目: 来源: 题型:

【题目】若函数在区间上存在零点,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”、“随机端点”、“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设A为圆O上一个定点,在圆周上随机取一点B,连接AB,所得弦长AB大于圆O的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为(  )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】第三届移动互联创新大赛,于2017年3月~10月期间举行,为了选出优秀选手,某高校先在计算机科学系选出一种子选手再从全校征集出3位志愿者分别与进行一场技术对抗赛根据以往经验 与这三位志愿者进行比赛一场获胜的概率分别为且各场输赢互不影响.

(1)求甲恰好获胜两场的概率;

(2)求甲获胜场数的分布列与数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列,其中

(1)若满足

①当,且时,求的值;

②若存在互不相等的正整数,满足,且成等差数列,求的值

(2)设数列的前项和为,数列的前n项和为,且恒成立,求的最小值

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)若,求处的切线方程;

(2)若对于任意的正数恒成立,求实数的值;

(3)若函数存在两个极值点,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某小区内有两条互相垂直的道路,平面直角坐标系的第一象限有一块空地,其边界是函数的图象,前一段曲线是函数图象的一部分,后一段是一条线段.测得的距离为8米,到的距离为16米,长为20米.

(1)求函数的解析式;

(2)现要在此地建一个社区活动中心,平面图为梯形(其中为两底边),问:梯形的高为多少米时,该社区活动中心的占地面积最大,并求出最大面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某人某天的工作是驾车从地出发,到两地办事,最后返回地,,三地之间各路段行驶时间及拥堵概率如下表

路段

正常行驶所用时间(小时)

上午拥堵概率

下午拥堵概率

1

03

06

2

02

07

3

03

09

若在某路段遇到拥堵,则在该路段行驶时间需要延长1小时.

现有如下两个方案:

方案甲:上午从地出发到地办事然后到达地,下午从地办事后返回地;

方案乙:上午从地出发到地办事,下午从地出发到达地,办完事后返回地.

1)若此人早上8点从地出发,在各地办事及午餐的累积时间为2小时,且采用方案甲,求他当日18点或18点之前能返回地的概率.

2)甲乙两个方案中,哪个方案有利于办完事后更早返回地?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的两个焦点分别为是椭圆上任意一点,且的最大值为4,椭圆的离心率与双曲线的离心率互为倒数.

1)求椭圆方程;

2)设点,过点作直线与圆相切且分别交椭圆于,求直线的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面多边形中,四边形是边长为2的正方形,四边形为等腰梯形,的中点, ,现将梯形沿折叠,使平面平面.

1)求证:

2)求与平面成角的正弦值.

查看答案和解析>>

同步练习册答案