相关习题
 0  266381  266389  266395  266399  266405  266407  266411  266417  266419  266425  266431  266435  266437  266441  266447  266449  266455  266459  266461  266465  266467  266471  266473  266475  266476  266477  266479  266480  266481  266483  266485  266489  266491  266495  266497  266501  266507  266509  266515  266519  266521  266525  266531  266537  266539  266545  266549  266551  266557  266561  266567  266575  266669 

科目: 来源: 题型:

【题目】已知椭圆)的左焦点为上一点,且轴垂直,分别为椭圆的右顶点和上顶点,且,且的面积是,其中是坐标原点.

1)求椭圆的方程.

2)若过点的直线互相垂直,且分别与椭圆交于点四点,求四边形的面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】2019101日我国隆重纪念了建国70周年,期间进行了一系列大型庆祝活动,极大地激发了全国人民的爱国热情.某校高三学生也投入到了这场爱国活动中,他()们利用周日休息时间到社区做义务宣讲员,学校为了调查高三男生和女生周日的活动时间情况,随机抽取了高三男生和女生各40人,对他()们的周日活动时间进行了统计,分别得到了高三男生的活动时间(单位:小时)的频数分布表和女生的活动时间(单位:小时)的频率分布直方图.(活动时间均在内)

活动时间

频数

8

10

7

9

4

2

1)根据调查,试判断该校高三年级学生周日活动时间较长的是男生还是女生?并说明理由;

2)在被抽取的80名高三学生中,从周日活动时间在内的学生中抽取2人,求恰巧抽到11女的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,为直线的倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出曲线的直角坐标方程,并求时直线的普通方程;

2)直线和曲线交于两点,点的直角坐标为,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】《孙子算经》是中国古代重要的数学著作,书中有一问题:今有方物一束,外周一匝有三十二枚,问积几何?,该著作中提出了一种解决此问题的方法:重置二位,左位减八,余加右位,至尽虚减一,即得.”通过对该题的研究发现,若一束方物外周一匝的枚数8的整数倍时,均可采用此方法求解,如图是解决这类问题的程序框图,若输入,则输出的结果为(

A.80B.47C.79D.48

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)证明:当时,

(2)若函数只有一个零点,求正实数的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在边长为4的正方形中,的中点,的中点,现将三角形沿翻折成如图2所示的五棱锥.

(1)求证:平面

(2)若平面平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:

分组

频数(单位:名)

使用“余额宝”

使用“财富通”

使用“京东小金库”

30

使用其他理财产品

50

合计

1200

已知这1200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.

(1)求频数分布表中的值;

(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)已知处的切线与轴垂直,若方程有三个实数解),求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地在每周六的晚上8点到10点半举行灯光展,灯光展涉及到10000盏灯,每盏灯在某一时刻亮灯的概率均为,并且是否亮灯彼此相互独立.现统计了其中100盏灯在一场灯光展中亮灯的时长(单位:),得到下面的频数表:

亮灯时长/

频数

10

20

40

20

10

以样本中100盏灯的平均亮灯时长作为一盏灯的亮灯时长.

(1)试估计的值;

2)设表示这10000盏灯在某一时刻亮灯的数目.

①求的数学期望和方差

②若随机变量满足,则认为.假设当时,灯光展处于最佳灯光亮度.试由此估计,在一场灯光展中,处于最佳灯光亮度的时长(结果保留为整数).

附:

①某盏灯在某一时刻亮灯的概率等于亮灯时长与灯光展总时长的商;

②若,则.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数,).在以坐标原点为极点、轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)若点在直线上,求直线的极坐标方程;

(2)已知,若点在直线上,点在曲线上,且的最小值为,求的值.

查看答案和解析>>

同步练习册答案