相关习题
 0  266420  266428  266434  266438  266444  266446  266450  266456  266458  266464  266470  266474  266476  266480  266486  266488  266494  266498  266500  266504  266506  266510  266512  266514  266515  266516  266518  266519  266520  266522  266524  266528  266530  266534  266536  266540  266546  266548  266554  266558  266560  266564  266570  266576  266578  266584  266588  266590  266596  266600  266606  266614  266669 

科目: 来源: 题型:

【题目】唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.诗中隐含着一个有趣的数学问题——“将军饮马”,即将军在观望烽火之后从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在如图所示的直角坐标系xOy,设军营所在平面区域为{(x,y)|x2+y2},河岸线所在直线方程为x+2y-4=0.假定将军从点P(,)处出发,只要到达军营所在区域即回到军营,当将军选择最短路程时,饮马点A的纵坐标为______.最短总路程为______

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=+.

(1)m=0,求不等式f(x)≤9的解集;

(2)m=2,x(1,4),f(x) 2xa<0,a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】四面体ABCD的每个顶点都在球O的表面上,AB是球O的一条直径,AC=2,BC=4,现有下面四个结论:

①球O的表面积为20π;AC上存在一点M,使得ADBM;

③若AD=3,BD=4;④四面体ABCD体积的最大值为.

其中所有正确结论的编号是( )

A.①②B.②④C.①④D.①③④

查看答案和解析>>

科目: 来源: 题型:

【题目】某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:

日期

41

47

415

421

430

温差

10

11

13

12

8

发芽数y/

23

25

30

26

16

1)从这5天中任选2天,求这2天发芽的种子数均不小于25的概率;

2)从这5天中任选2天,若选取的是41日与430日的两组数据,请根据这5天中的另三天的数据,求出y关于x的线性回归方程

3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

附:回归直线的斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目: 来源: 题型:

【题目】设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点, 到抛物线的准线的距离为.

(I)求椭圆的方程和抛物线的方程;

(II)设上两点 关于轴对称,直线与椭圆相交于点异于点),直线轴相交于点.若的面积为,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是(

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,原点为,抛物线的方程为,线段是抛物线的一条动弦.

1)求抛物线的准线方程和焦点坐标

2)当时,设圆,若存在两条动弦,满足直线与圆相切,求半径的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在①;②,这两个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.

中,内角的对边分别为,设的面积为,已知 .

1)求的值;

2)若,求的值.

注:如果选择多个条件分别解答,按第一个解答计分.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校为了解该校高三年级学生数学科学习情况,对一模考试数学成绩进行分析,从中抽取了名学生的成绩作为样本进行统计,该校全体学生的成绩均在,按照的分组作出频率分布直方图如图(1)所示,样本中分数在内的所有数据的茎叶图如图(2)所示.根据上级统计划出预录分数线,有下列分数与可能被录取院校层次对照表为表(3).

分数

可能被录取院校层次

专科

本科

重本

图(3

1)求和频率分布直方图中的的值;

2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取3人,求至少有一人是可能录取为重本层次院校的概率;

3)在选取的样本中,从可能录取为重本和专科两个层次的学生中随机抽取3名学生进行调研,用表示所抽取的3名学生中为重本的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在平面直角坐标系xOy中,直线l的参数方程为t为参数),曲线的方程为.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.

1)求直线l和曲线的极坐标方程;

2)曲线分别交直线l和曲线于点AB,求的最大值及相应的值.

查看答案和解析>>

同步练习册答案