相关习题
 0  266433  266441  266447  266451  266457  266459  266463  266469  266471  266477  266483  266487  266489  266493  266499  266501  266507  266511  266513  266517  266519  266523  266525  266527  266528  266529  266531  266532  266533  266535  266537  266541  266543  266547  266549  266553  266559  266561  266567  266571  266573  266577  266583  266589  266591  266597  266601  266603  266609  266613  266619  266627  266669 

科目: 来源: 题型:

【题目】为增强学生法治观念,营造学宪法、知宪法、守宪法的良好校园氛围,某学校开展了宪法小卫士活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50人,统计他们的竞赛成绩,并得到如表所示的频数分布表.

分数段

人数

5

15

15

12

(Ⅰ)求频数分布表中的的值,并估计这50名学生竞赛成绩的中位数(精确到0.1);

(Ⅱ)将成绩在内定义为合格,成绩在内定义为不合格”.请将列联表补充完整.

合格

不合格

合计

高一新生

12

非高一新生

6

合计

试问:是否有95%的把握认为法律知识的掌握合格情况是否是高一新生有关?说明你的理由;

(Ⅲ)在(Ⅱ)的前提下,在该50人中,按合格与否进行分层抽样,随机抽取5人,再从这5人中随机抽取2人,求恰好2人都合格的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

.

查看答案和解析>>

科目: 来源: 题型:

【题目】二进制来源于我国古代的《易经》,该书中有两类最基本的符号:“—”“——”,其中“—”在二进制中记作“1”“——”在二进制中记作“0”,例如二进制数化为十进制的计算如下:.若从两类符号中任取2个符号进行排列,则得到的二进制数所对应的十进制数大于2的概率为(

A.0B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】近几年,在国家大力支持和引导下,中国遥感卫星在社会生产和生活各领域的应用范围不断扩大,中国人民用遥感卫星系统研制工作取得了显著成绩,逐步形成了气象、海洋、陆地资源和科学试验等遥感卫星系统.如图是2007—2018年中国卫星导航与位置服务产业总体产值规模(万亿)及增速(%)的统计图,则下列结论中错误的是(

A.2017年中国卫星导航与位置服务产业总体产值规模达到2550亿元,较2016年增长20.40%

B.2019年中国卫星导航与位置服务产业总体产值规模保持2018年的增速,总体产值规模将达3672亿元

C.2007—2018年中国卫星导航与位置服务产业总体产值规模逐年增加,但不与时间成正相关

D.2007—2018年中国卫星导航与位置服务产业总体产值规模的增速中有些与时间成负相关

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆)的离心率为,点的坐标为,且椭圆上任意一点到点的最大距离为.

1)求椭圆的标准方程;

2)若过点的直线与椭圆相交于两点,点为椭圆长轴上的一点,求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)求函数的极值;

2)当时,若函数有两个极值点,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市正在进行创建全国文明城市的复验工作,为了解市民对“创建全国文明城市”的知识知晓程度,某权威调查机构对市民进行随机调查,并对调查结果进行统计,共分为优秀和一般两类,先从结果中随机抽取100份,统计得出如下列联表:

优秀

一般

总计

25

25

50

30

20

50

总计

55

45

100

1)根据上述列联表,是否有的把握认为“创城知识的知晓程度是否为优秀与性别有关”?

2)现从调查结果为一般的市民中,按分层抽样的方法从中抽取9人,然后再从这9人中随机抽取3人,求这三位市民中男女都有的概率;

3)以样本估计总体,视样本频率为概率,从全市市民中随机抽取10人,用表示这10人中优秀的人数,求随机变量的期望和方差.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正四棱锥的底边长为2,侧棱长为上一点,且,点分别为上的点,且.

1)证明:平面平面

2)求锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求直线的普通方程和曲线的直角坐标方程;

2)若射线)与直线和曲线分别交于两点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数.

1)当为自然对数的底数)时,求的最小值;

2)讨论函数零点的个数;

3)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在中,角的对边分别为,且.

(1)求的值;

(2)若,求的取值范围.

查看答案和解析>>

同步练习册答案