相关习题
 0  266439  266447  266453  266457  266463  266465  266469  266475  266477  266483  266489  266493  266495  266499  266505  266507  266513  266517  266519  266523  266525  266529  266531  266533  266534  266535  266537  266538  266539  266541  266543  266547  266549  266553  266555  266559  266565  266567  266573  266577  266579  266583  266589  266595  266597  266603  266607  266609  266615  266619  266625  266633  266669 

科目: 来源: 题型:

【题目】我市某区2018年房地产价格因棚户区改造实行货币化补偿,使房价快速走高,为抑制房价过快上涨,政府从20192月开始采用实物补偿方式(以房换房),3月份开始房价得到很好的抑制,房价渐渐回落,以下是20192月后该区新建住宅销售均价的数据:

月份

3

4

5

6

7

价格(百元/平方米)

83

82

80

78

77

1)研究发现,3月至7月的各月均价(百元/平方米)与月份之间具有较强的线性相关关系,求价格(百元/平方米)关于月份的线性回归方程;

2)用表示用(1)中所求的线性回归方程得到的与对应的销售均价的估计值,3月份至7月份销售均价估计值与实际相应月份销售均价差的绝对值记为,即.,则将销售均价的数据称为一个好数据,现从5个销售均价数据中任取2个,求抽取的2个数据均是好数据的概率.

参考公式:回归方程系数公式;参考数据:.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示的几何体中,平面,四边形为菱形,,点分别在棱.

1)若平面,设,求的值;

2)若,直线与平面所成角的正切值为,求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程是t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.

1)证明:直线l与曲线C相切;

2)设直线lx轴、y轴分别交于点AB,点P是曲线C上任意一点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】新疆小南瓜以沙甜闻名全国,小田计划从新疆运输小南瓜去上海,随机从某瓜农的瓜地里挑选了100个,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示,将频率视为概率.

1)请根据频率分布直方图估计该瓜农的小南瓜的平均质量;

2)已知瓜地里还有2万个小南瓜已经成熟,可以采摘,小田想全部购买,可是瓜农要求超过400克的小南瓜以5元一个的价格出售,其他的以3元一个的价格出售.将频率视为概率,若新疆到上海往返的运费约2000元,请问这2万个小南瓜在上海以每斤(500克)多少元定价才能保证小田的利润不少于5000元?(结果保留一位小数)

3)某天王阿姨在上海某超市的蔬菜柜台上看到小田从新疆采摘的新疆小南瓜,已知柜台上有若干个,若质量超过500克的小南瓜为优质品,王阿姨随机购买了20个小南瓜,求王阿姨购买的小南瓜中优质品个数的期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C)的左,右焦点为,且焦距为,点分别为椭圆C的上、下顶点,满足.

1)求椭圆C的方程;

2)已知点,椭圆C上的两个动点MN满足,求证:直线过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中,平面M中点,H为线段上一点(除的中点外),且.当三棱锥的体积最大时,则三棱锥的外接球表面积为(

A.B.

C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】支付宝和微信支付已经成为现如今最流行的电子支付方式,某市通过随机询问100名居民(男女居民各50名)喜欢支付宝支付还是微信支付,得到如下的列联表:

支付宝支付

微信支付

40

10

25

25

附表及公式:.

P

0.050

0.010

0.001

k

3.841

6.635

10.828

则下面结论正确的是(

A.以上的把握认为支付方式与性别有关

B.在犯错误的概率超过的前提下,认为支付方式与性别有关

C.在犯错误的概率不超过的前提下,认为支付方式与性别有关

D.以上的把握认为支付方式与性别无关

查看答案和解析>>

科目: 来源: 题型:

【题目】互联网+”时代的今天,移动互联快速发展,智能手机(Smartphone)技术不断成熟,尤其在5G领域,华为更以件专利数排名世界第一,打破了以往由美、英、日垄断的前三位置,再次荣耀世界,而华为的价格却不断下降,远低于苹果;智能手机成为了生活中必不可少的工具,学生是对新事物和新潮流反应最快的一个群体之一,越来越多的学生在学校里使用手机,为了解手机在学生中的使用情况,对某学校高二年级名同学使用手机的情况进行调查,针对调查中获得的每天平均使用手机进行娱乐活动的时间进行分组整理得到如下的数据:

使用时间(小时)

1

2

3

4

5

6

7

所占比例

4%

10%

31%

16%

12%

2%

1)求表中的值;

2)从该学校随机选取一名同学,能否根据题目中所给信息估计出这名学生每天平均使用手机进行娱乐活动小于小时的概率?若能,请算出这个概率;若不能,请说明理由;

3)若从使用手机小时和小时的两组中任取两人,调查问卷,看看他们对使用手机进行娱乐活动的看法,求这人都使用小时的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx)=|2xa|+|xa+1|

1)当a4时,求解不等式fx≥8

2)已知关于x的不等式fxR上恒成立,求参数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2ρ24ρcosθ+30

1)求曲线C1的一般方程和曲线C2的直角坐标方程;

2)若点P在曲线C1上,点Q曲线C2上,求|PQ|的最小值.

查看答案和解析>>

同步练习册答案