相关习题
 0  266444  266452  266458  266462  266468  266470  266474  266480  266482  266488  266494  266498  266500  266504  266510  266512  266518  266522  266524  266528  266530  266534  266536  266538  266539  266540  266542  266543  266544  266546  266548  266552  266554  266558  266560  266564  266570  266572  266578  266582  266584  266588  266594  266600  266602  266608  266612  266614  266620  266624  266630  266638  266669 

科目: 来源: 题型:

【题目】(某工厂生产零件A,工人甲生产一件零件A,是一等品、二等品、三等品的概率分别为,工人乙生产一件零件A,是一等品、二等品、三等品的概率分别为.己知生产一件一等品、二等品、三等品零件A给工厂带来的效益分别为10元、5元、2.

(1)试根据生产一件零件A给工厂带来的效益的期望值判断甲乙技术的好坏;

(2)为鼓励工人提高技术,工厂进行技术大赛,最后甲乙两人进入了决赛.决赛规则是:每一轮比赛,甲乙各生产一件零件A,如果一方生产的零件A品级优干另一方生产的零件,则该方得分1分,另一方得分-1分,如果两人生产的零件A品级一样,则两方都不得分,当一方总分为4分时,比赛结束,该方获胜.Pi+4i=4324)表示甲总分为i时,最终甲获胜的概率.

①写出P0P8的值;

②求决赛甲获胜的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】己知圆F1(x+1)2 +y2= r2(1≤r≤3),圆F2(x-1)2+y2= (4-r)2

(1)证明:圆F1与圆F2有公共点,并求公共点的轨迹E的方程;

(2)已知点Q(m0)(m<0),过点E斜率为k(k≠0)的直线与(Ⅰ)中轨迹E相交于MN两点,记直线QM的斜率为k1,直线QN的斜率为k2,是否存在实数m使得k(k1+k2)为定值?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2 +y2 =1,曲线C2的参数方程为θ为参数).

(Ⅰ)求曲线C1C2的极坐标方程:

(Ⅱ)设射线θ=(ρ>0)分别与曲线C1C2相交于AB两点,求|AB|的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=ex-x2 -kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.

(1)求实数k的取值范围;

(2)证明:f(x)的极大值不小于1

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,三棱柱ABC-A1B1C1中,侧面BCC1B1是菱形,AC=BC=2,∠CBB1=,点A在平面BCC1B1上的投影为棱BB1的中点E

(1)求证:四边形ACC1A1为矩形;

(2)求二面角E-B1C-A1的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数满足=1,则等于(

A.-B.C.-D.

查看答案和解析>>

科目: 来源: 题型:

【题目】台球是一项国际上广泛流行的高雅室内体育运动,也叫桌球(中国粤港澳地区的叫法)、撞球(中国台湾地区的叫法)控制撞球点、球的旋转等控制母球走位是击球的一项重要技术,一次台球技术表演节目中,在台球桌上,画出如图正方形ABCD,在点EF处各放一个目标球,表演者先将母球放在点A处,通过击打母球,使其依次撞击点EF处的目标球,最后停在点C处,若AE=50cmEF=40cmFC=30cm,∠AEF=CFE=60°,则该正方形的边长为(

A.50cmB.40cmC.50cmD.20cm

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点FM分别在线段ACBD1(不包含端点)上运动,则(

A.在点F的运动过程中,存在EF//BC1

B.在点M的运动过程中,不存在B1MAE

C.四面体EMAC的体积为定值

D.四面体FA1C1B的体积不为定值

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)若,求证:.

2)讨论函数的极值;

3)是否存在实数,使得不等式上恒成立?若存在,求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,平面,四边形为正方形,点为线段上的点,过三点的平面与交于点.将①,②,③中的两个补充到已知条件中,解答下列问题:

1)求平面将四棱锥分成两部分的体积比;

2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案