相关习题
 0  266472  266480  266486  266490  266496  266498  266502  266508  266510  266516  266522  266526  266528  266532  266538  266540  266546  266550  266552  266556  266558  266562  266564  266566  266567  266568  266570  266571  266572  266574  266576  266580  266582  266586  266588  266592  266598  266600  266606  266610  266612  266616  266622  266628  266630  266636  266640  266642  266648  266652  266658  266666  266669 

科目: 来源: 题型:

【题目】设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.

()分别为椭圆的左、右焦点,且直线轴,求四边形的面积;

()若直线的斜率存在且不为0,四边形为平行四边形,求证:;

()()的条件下,判断四边形能否为矩形,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:)统计结果用茎叶图记录如下:

()试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;

()从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求的分布列和数学期望;

()为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出的最小值.(结论不要求证明)

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥的底面中,平面的中点,且

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)线段上是否存在点,使得,若存在指出点的位置,若不存在请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在党中央的正确指导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份新冠肺炎疫情得到了控制.下图是国家卫健委给出的全国疫情通报,甲、乙两个省份从27日到213日一周的新增新冠肺炎确诊人数的折线图如下:

根据图中甲、乙两省的数字特征进行比对,通过比较把你得到最重要的两个结论写在答案纸指定的空白处.

_________________________________________________.

_________________________________________________.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中为常数.

1)讨论函数的单调性;

2)当为自然对数的底数),时,若方程有两个不等实数根,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线与椭圆交于不同的两点.

1)若线段的中点为,求直线的方程;

2)若的斜率为,且过椭圆的左焦点的垂直平分线与轴交于点,求证:为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】2019101日,庆祝中华人民共和国成立70周年大会、阅兵式、群众游行在北京隆重举行,这次阅兵编59个方(梯)队和联合军乐团,总规模约1.5万人,各型飞机160余架、装备580余套,是近几次阅兵中规模最大的一次.某机构统计了观看此次阅兵的年龄在30岁至80岁之间的100个观众,按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

1)求的值及这100个人的平均年龄(同一组中的数据用该组区间的中点值为代表);

2)用分层抽样的方法在年龄为的人中抽取5人,再从抽取的5人中随机抽取2人接受采访,求接受采访的2人中年龄在的恰有1人的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( .(取

A.16B.17C.24D.25

查看答案和解析>>

科目: 来源: 题型:

【题目】下图统计了截止到2019年年底中国电动汽车充电桩细分产品占比及保有量情况,关于这5次统计,下列说法正确的是(

A.私人类电动汽车充电桩保有量增长率最高的年份是2018

B.公共类电动汽车充电桩保有量的中位数是25.7万台

C.公共类电动汽车充电桩保有量的平均数为23.12万台

D.2017年开始,我国私人类电动汽车充电桩占比均超过50%

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)设,若函数的两个极值点恰为函数的两个零点,且的范围是,求实数a的取值范围.

查看答案和解析>>

同步练习册答案